
Software (engineering) and energy
efficiency (and other effects) – the

big picture
Presentation for LVM Working group on climate and environment effects of ICT -

applications

Prof. Jari Porras (LUT University) and

Aim of this study
● This study is performed by people working on software (engineering)

and sustainability related issues within Karlskrona Sustainability Design
Alliance

● This study is prepared for the Finnish Ministry of Transportation and
Communication working group on Climate and Environment effects of
ICT (#ICTClimate)

● The aim of this study is to collect information from literature concerning
the ways software and systems, as well as processes of software
engineering, can have an effect on environment and thus climate.

Categories to be considered
● Footprint of software and systems

○ Energy efficiency issues as a way to decrease the footprint
● Sustainability within software engineering process

○ Sustainability as a quality attribute
● Handprint of software and systems
● Increasing the awareness of the effects of software and systems

Calero & Piattini: Introduction to Green in Software
Engineering, Green in Software Engineering, Springer,
2015
• Software sustainability

• the way to achieve sustainable software is
principally by improving power
consumption but rarely if ever the objective

• Software engineering sustainability
• Sustainability should generally be taken into

account from the very first stages of
software development

• Green software
• Produces as little waste as possible during

its development and operation
• Green in Software Engineering

• include green practices as part of the
software development process

– The economic pillar ensures that our economic growth maintains a healthy
balance with our ecosystem; it integrates environmental and social concerns
into business’.

Of all the definitions above, the most widely used is that established by the
Brundtland report of the United Nations (UN) [62].

If we take a close look at the definitions, we can observe that there are two
fundamental pillars underpinning sustainability: ‘The capacity of something to last
a long time’ and ‘the resources used’.

Another aspect that is related to sustainability, and that can be found in the
literature, has to do with the topic to which it is applied: information systems, ICT,
software, etc.

Taking into account that our focus is on software engineering (SE), Fig. 1.2
summarises the different levels of sustainability that relate organization to infor-
mation systems and to software engineering.

In the following sections, we will present some definitions for each of the levels
in Fig. 1.2. We have worked mainly with papers published in the area of software,
software engineering and information systems, because that is what this book
focuses on. This means that we will not present an exhaustive study on definitions
(i.e. on those beyond the scope of this book), but we believe our work will provide a
snapshot of how things are interpreted in the software engineering area.

ORGANIZATION
SUSTAINABILITY

Business
Process

Sustainability

Services
Sustainability

Informa!on
Systems

Sustainability

ICT Sustainability

IT Sustainability

Hardware
Sust.

So"ware
Sust.

Fig. 1.2 Sustainability levels

1 Introduction to Green in Software Engineering 7

Murugesan and Gangadharan [43] define green software as environment-
friendly software that helps improve the environment. The authors classify green
software into four categories:

• Software that is greener (consumes less energy to run)
• Embedded software that assists other things in going green (smart operations)
• Sustainability-reporting software (or carbon management software)
• Software for understanding climate change, assessing its implications and

forming suitable policy responses

Green software is defined in [57] as software that must fulfil three high-level
requirements:

1. The required software engineering processes of software development, mainte-
nance and disposal must save resources and reduce waste.

2. Software execution must save resources and reduce waste.
3. Software must support sustainable development.

According to [22], green software is ‘an application that produces as little waste
as possible during its development and operation’.

1.3.3.1 Green by Software Versus Green in Software

As happened with Green IT, green software can be divided into green by software
and green in software. Again, the main difference is whether the goal pursued is to
have more environment-friendly software or if it is rather to produce software that
helps the environment. Figure 1.6 shows this in diagram form.

Green So!ware

Green BY So!ware Green IN So!ware
Dematerialization
Grid Management

Cloud Management
Data Centers

Domain-related applications
...

Dematerialization
Grid Management

Cloud Management
Data Centers

Domain-related applications
...

Process
Product

Life cycle
Governance

...

Process
Product

Life cycle
Governance

...

Fig. 1.6 ‘Green by’ and ‘Green in’ software

1 Introduction to Green in Software Engineering 19

Footprint of software and systems
(energy efficiency)

Taina: How green is your software?, ICSB, 2010

• Since a software has a life cycle, it creates direct and indirect carbon
emissions: it has a carbon footprint
• Software has indirect resource requirements
• 1) Development: The software is implemented,2)Beta testing:

Potential customers test the software, 3) Delivery and re-delivery: The
software is delivered to customers, 4) Usage: The software is used
and 5) Maintenance: The software is updated.

2 Juha Taina

In this paper we analyse how the CF of a software can be calculated. We
first define the life cycle of a software package and then analyse each step in the
cycle. Each step has a CF that can be estimated.

2 Idea

It is not straightforward to define a CF for a software. A software does not
directly require resources: the hardware behind it requires them. However, a
software has indirect resource requirements. Its development, delivery, and main-
tenance create a CF. It uses CPU cycles that create a CF. It may request services
from peripherals that create a CF. All these can be calculated during the soft-
ware life cycle.

The life cycle of a software can be divided into the following phases:

1. Development: The software is implemented.
2. Beta testing: Potential customers test the software.
3. Delivery and re-delivery: The software is delivered to customers.
4. Usage: The software is used.
5. Maintenance: The software is updated.

Since the life cycle consists of the previous phases and each phase has a CF,
it is safe to define that the carbon footprint of a software is the sum of the CFs
of the phases. This gives us the following definition:

Let us have a software s. The CF of s, cfs, is

cfs = (ds + bs + drs +ms)/ns + us (1)

where ns is the number of delivered software packages, ds is the CF of
development, bs is the CF of beta testing, rds is the CF of delivery and
re-delivery, ms is the CF of maintenance, and us is the CF of usage.

The CF of each phase consists of two items: 1) material CFs, and 2) energy
usage CFs. A material CF depends on the production, delivery, usage, and dis-
posal of a product. An energy usage CF depends on how the required energy is
produced.

A material CF can be calculated if its life cycle is known. An exact analysis
of various material CFs is beyond the scope of this paper. We use estimates from
various carbon footprint calculators when necessary.

An energy CF can be calculated directly but usually it is easier to count
the energy required for a task and multiply it with an energy carbon footprint
factor F . It shows how much carbon dioxide is emitted from generating one kWh
energy. The energy carbon footprint factor is calculated from the life cycle of a
power plant. Its value is always over zero regardless of the energy source.

A detailed analysis of each life cycle phase is required to estimate the CF. We
will give a brief summary of the steps and show how the CFs can be calculated.

How green is your software? 3

In the analysis we use a few predefined constants. Changing these walues will
strongly affect the resulting CFs. Due to this the individual CF values are less
important than how they relate to each other.

The constants we use are as follows:

Energy carbon footprint: F = 0.25kg/kWh. This value is based on a Finnish CF
calculator (http://www.hs.fi/viesti/hiilijalanjalkitesti, in Finnish)
and is a relatively clean energy source.

Paper carbon footprint: cfp = 0.001kg/sheet.
Binder carbon footprint: cfb = 2kg/binder. The paper and binder CFs are based

on various carbon footprint calculators on the Internet, for instance http:
//www.stopglobalwarming.org/carboncalculator.asp.

Printer power consumption: pp = 400W. This is a combined estimate of printer
standby, ready, and printing power consumption.

Computer power consumption: pc = 400W.
Relay node power consumption: pn = 10W. The computer and relay node

power consumptions are based on modern computer technology.
Office power consumption: po = 600W.
Meeting room power consumption: pm = 1000W. Room power requirements are

rough estimates of light and heating power consumptions.

3 Development

Development usually follows a well-defined process. The process has phases, best
practices, and people. A typical development process consist of one or more cy-
cles, each of which have the following major tasks: requirements gathering and
analysis, design, implementation and unit testing, integration, and verification
and validation. The techniques used in each of the tasks vary considerably be-
tween process models but in most cases the phases are present. We can calculate
a CF for each of the phases:

The CF of development, ds of software s, is

ds = dgs + dds + dius + dis + dvs (2)

where dgs is the CF of requirements gathering and analysis, dds is the
CF of design, dius is the CF of implementation and unit testing, dis is
the CF of integration, and dvs is the CF of verification and validation.

A detailed analysis of the development CF depends on the used process
model and is beyond the scope of this paper. For example, a simple requirements
gathering process might go as follows:

1. A requirements team requests a brainstorm meeting. Result: a call and an
agenda.

2. The meeting is in a conference room. Result: a list of raw requirements.
3. The raw requirements are analysed. Result: analysed new requirements.

10 Juha Taina

does not directly create a CF. It, however, requires resource which in turn create
a CF.

The most intuitive resource for a software is a processor cycle. Each cycle
requires some amount of energy in the computer where it is executed. We can
calculate its CF and include it in the total CF. Thus we get the first definition

The CF of usage, us of software s, is

us = (
∑

i

ci ∗ Ei) ∗ F (6)

where ci is the CPU cycle i of the software usage, E0i is an energy factor
that tells how much energy the cycle takes, and F is an energy carbon
footprint factor.

We simplify the usage analysis by assuming that the power consumption of
all CPUs is equal. While this is not entirely true, it is a good approximation. It
saves us from deep analysis about CPU scheduling and installing the software
to a new computer.

While the equation above is correct it is not very useful. It is practically
impossible to estimate the total number of CPU cycles in a software life cycle.
An easier approach is to count CPU time for the software and estimate how
much energy it requires. Thus

us = (
∑

j

tj) ∗ p ∗ F (7)

where ti is the ith chunk of CPU time in seconds, p is the power require-
ment of the CPU, and F is the energy carbon footprint factor.

In many cases counting the used CPU time directly is perhaps too difficult.
It can be used with simple applications whose life cycle and CPU usage are easy
to estimate. We need easier and more accurate estimates for normal software
CFs.

A good way to estimate software resource usage is via software service re-
quests. If we can list typical service requests and count how much CPU the
software needs to fulfil them we can estimate the total CF of the software use.

Software performance analysis with a suitable queue model is a good tool for
service request estimation . A working performance analysis model will estimate
how much CPU time each type of service request will need on average, how much
they will wait on queues, and how much disk, network or other external services
they will require. Once we have estimates for each request type, we can estimate
how often each request type will occur and hence count the total. We get

us = (
n∑

k=1

Tk ∗ fk) ∗ p ∗ F (8)

Johann et al.: How to Measure Energy-Efficiency of
Software: Metrics and Measurement Results, GREENS,
2012
• Generic metric to measure software and a method to apply it in a

software engineering process

How to Measure Energy-Efficiency of Software: Metrics and Measurement Results

Timo Johann, Markus Dick, Stefan Naumann, Eva Kern
Trier University of Applied Sciences, Germany

(t.johann, m.dick, s.naumann, e.kern)@umwelt-campus.de

Abstract—In the field of information and computer tech-

nology (ICT), saving energy has its focus set on energy

efficient hardware and its operation. Recently, efforts have

also been made in the area of computer software. However,

the development of energy efficient software requires metrics,

which measure the software’s energy consumption as well as

models to monitor and minimize it. In software and software

development processes they hardly exist. In this work we

present a generic metric to measure software and a method to

apply it in a software engineering process.

Keywords-Energy Efficiency, Green Software, Metrics

I. INTRODUCTION

Activities in the field of Green IT set new standards for the
requirements of information and communication technology.
Generally, these requirements primary concern the energy
consumption of ICT. The developments in Green IT, which
primarily focus on computer hardware, led to the under-
standing that “the most strategic aspect of energy efficient
computing will be the evolution of application software
to facilitate system-wide energy efficiency” [1, p.58]. This
paper presents a method to develop and apply metrics and
measurement methods to measure the energy consumption
that is directly related to the software. The method presented
here should enable software developers to continuously
measure and monitor the energy consumption of the software
during the development process. It seamlessly integrates into
the GREENSOFT Model (cf. figure. 1), a reference model for
Green and Sustainable Software [2].

II. DEVELOPMENT OF CUSTOM METRICS

Metrics for energy efficient software rely on its useful
work done [3]. Since, modern software consists of manifold
modules that all have a special purpose, there can be more
than just one metric. The software parts can be measured
individually or combined. For a proper comparison of soft-
ware the measured modules should be as similar as possible.
Basically a generic metric can be defined as

EnergyEfficiency =
UsefulWorkDone

UsedEnergy
.

III. MEASURING THE ENERGY CONSUMPTION

There already exist approaches for measuring software en-
ergy consumption, mostly as black box measurement. White
box measurements, relying on source code instrumentation,
are hardly used. Figure 2 intends to classify the known

Figure 1. The Greensoft Model [2, p. 270]

methods of energy efficiency measurement. Benchmarking
methods are able to measure a system as a black box
and can generate a statement on how the entire system
(software and hardware) performs on the whole. When it
comes to measuring a given software, one cannot apply
these benchmarks because each of them is customized for
one specific group of tasks (database benchmarks, graphic
benchmarks, etc.). The approach of Dick et al. [4] defines
individual scenarios for a specific group of software (e.g.
Browsers) and then measures concrete occurrences with the
same scenario, which can give a better statement about the
software’s energy consumption. These approaches can be
categorized as black box measurements because they do not
allow to take a look inside, which is their main disadvantage.
That is why we propose a kind of white box measurement
to tell in which part of software there is potential for energy
savings. A white box method is better suited to find resource
intensive parts of programs and to improve them. To do so,
we will use a known technique: source code instrumentation,
which is often used in the context of software profiling, e.g.
for runtime analysis.

The experimental set-up to perform a white box
measurement consists of a set of components (cf. figure
3). The system under test runs an instrumented application
and is connected to a power meter. The power meter
is connected to the measuring system, where an Energy

978-1-4673-1832-7/12/$31.00 c� 2012 IEEE GREENS 2012, Zurich, Switzerland51

Figure 2. Methods to Measure Energy Efficiency

Server converts the values to performance counters. The
instrumented application also writes performance counters.
These can be read, e.g. by logging or monitoring tools
to analyze the software regarding its energy consumption.
To accomplish the instrumentation the set-up builds on
an API provided by Intel to perform the source code
instrumentation [3]. Using this set-up, existing source code
can be expanded by counters. These numerical values can
be used e.g. for counting loop cycles, marking entry and
exit points of code fragments, counting the amount of how
often parts of software are frequented, etc.

Figure 3. Measurement Environment

IV. EXAMPLE ENERGY EFFICIENCY METRICS

A. Sorting Application

Since sorting is a common task in computer science, and
is easy enough to quickly find the useful work, it is good
as a first example. Here it is obvious that the useful work is
sorting items and it follows that the metric is SortedItems

UsedEnergy . To
make it a little bit more exciting we will use two different
implementations of sorting algorithms that basically differ
in their complexity. Thus, we have something to compare.
Therefore, we picked Bubble Sort with a complexity of
O(n2) and Heap Sort with a complexity of O(n · log(n)).
The sorting application is implemented to generate an array
with n randomly generated double values. Then the array
should be sorted using Bubble Sort; make a break and remix
the array values, and then use Heap Sort to perform the same

task. For the instrumentation, we declared two counters; one
counter counts the items that are already sorted, the other
counter is used as a phase counter and is only meant to
generate a positive edge when sorting starts and a negative
edge when sorting ends. Bubble Sort uses double nested
for-loops. The outer loop goes over the array from 0 to
n once. Every time the loop reenters the counter increases
and an item is sorted. Counting the sorted items in Heap
Sort is similar. After transforming the array into a binary
heap, a for-loop goes over it and after every pass the counter
increases and an item is sorted.
Since the system performs several background processes and
services, which cause some peaks in the processor time (red)
and in the energy consumption (green), we measured the
average idle consumption which is about 65 Watt.

Then the actual measurement of the algorithms with
bubble sort is started, which is shown in figure 4. The
algorithms sort 200,000 double values. The phase counter
(blue) indicates the start of sorting, which instantly stresses
the CPU (red) and increases the consumed energy (green).
When all items are sorted (b lack), the phase counter gener-
ates the negative edge which is the end of the measurement.
The sorting time was 110 seconds and the average energy
consumption was 100 Watts.

100W ⇥ 110s = 11000Ws = 3Wh = 11000J

The whole algorithm consumed 10,800 Joule for the
sorting of 200,000 double values, which results in

200, 000

10, 800J
= 18

SortedItems

Joule

The Heap Sort algorithm also sorted 200,000 double
values and the result is shown in figure 4, where it is obvious
that the algorithm worked - as expected - much faster. The
values were sorted in five seconds. Due to the resolution
(1 second) the power consumption line (green) did not
immediately follow the phase counter, but here the average
power consumption during processing was 100 Watts, which
results in 100W ⇥ 5s = 500Ws = 0.14Wh = 500J .

For a better comparison it is rational to give the algorithms
the same time frame and calculate the power consumption
of the idle time of the faster algorithm and add it to the total
power consumption. Since the idle time is 110 � 5 = 105,
and the idle power consumption is 65, the power consump-
tion is 65W ⇥ 105s = 6825Ws = 1.89Wh = 6825J .
Adding the energy consumed during sorting the result is
7325 J.

200, 000

500J + 6825J
= 27.3

SortedItems

Joule

The algorithm with the better asymptotic run time seems
to also have the better energy efficiency, which corroborates
the assumption that an algorithm with a higher performance
also has a higher energy efficiency.

52

Figure 2. Methods to Measure Energy Efficiency

Server converts the values to performance counters. The
instrumented application also writes performance counters.
These can be read, e.g. by logging or monitoring tools
to analyze the software regarding its energy consumption.
To accomplish the instrumentation the set-up builds on
an API provided by Intel to perform the source code
instrumentation [3]. Using this set-up, existing source code
can be expanded by counters. These numerical values can
be used e.g. for counting loop cycles, marking entry and
exit points of code fragments, counting the amount of how
often parts of software are frequented, etc.

Figure 3. Measurement Environment

IV. EXAMPLE ENERGY EFFICIENCY METRICS

A. Sorting Application

Since sorting is a common task in computer science, and
is easy enough to quickly find the useful work, it is good
as a first example. Here it is obvious that the useful work is
sorting items and it follows that the metric is SortedItems

UsedEnergy . To
make it a little bit more exciting we will use two different
implementations of sorting algorithms that basically differ
in their complexity. Thus, we have something to compare.
Therefore, we picked Bubble Sort with a complexity of
O(n2) and Heap Sort with a complexity of O(n · log(n)).
The sorting application is implemented to generate an array
with n randomly generated double values. Then the array
should be sorted using Bubble Sort; make a break and remix
the array values, and then use Heap Sort to perform the same

task. For the instrumentation, we declared two counters; one
counter counts the items that are already sorted, the other
counter is used as a phase counter and is only meant to
generate a positive edge when sorting starts and a negative
edge when sorting ends. Bubble Sort uses double nested
for-loops. The outer loop goes over the array from 0 to
n once. Every time the loop reenters the counter increases
and an item is sorted. Counting the sorted items in Heap
Sort is similar. After transforming the array into a binary
heap, a for-loop goes over it and after every pass the counter
increases and an item is sorted.
Since the system performs several background processes and
services, which cause some peaks in the processor time (red)
and in the energy consumption (green), we measured the
average idle consumption which is about 65 Watt.

Then the actual measurement of the algorithms with
bubble sort is started, which is shown in figure 4. The
algorithms sort 200,000 double values. The phase counter
(blue) indicates the start of sorting, which instantly stresses
the CPU (red) and increases the consumed energy (green).
When all items are sorted (b lack), the phase counter gener-
ates the negative edge which is the end of the measurement.
The sorting time was 110 seconds and the average energy
consumption was 100 Watts.

100W ⇥ 110s = 11000Ws = 3Wh = 11000J

The whole algorithm consumed 10,800 Joule for the
sorting of 200,000 double values, which results in

200, 000

10, 800J
= 18

SortedItems

Joule

The Heap Sort algorithm also sorted 200,000 double
values and the result is shown in figure 4, where it is obvious
that the algorithm worked - as expected - much faster. The
values were sorted in five seconds. Due to the resolution
(1 second) the power consumption line (green) did not
immediately follow the phase counter, but here the average
power consumption during processing was 100 Watts, which
results in 100W ⇥ 5s = 500Ws = 0.14Wh = 500J .

For a better comparison it is rational to give the algorithms
the same time frame and calculate the power consumption
of the idle time of the faster algorithm and add it to the total
power consumption. Since the idle time is 110 � 5 = 105,
and the idle power consumption is 65, the power consump-
tion is 65W ⇥ 105s = 6825Ws = 1.89Wh = 6825J .
Adding the energy consumed during sorting the result is
7325 J.

200, 000

500J + 6825J
= 27.3

SortedItems

Joule

The algorithm with the better asymptotic run time seems
to also have the better energy efficiency, which corroborates
the assumption that an algorithm with a higher performance
also has a higher energy efficiency.

52

Ahmad et al.: A Review on mobile application energy
profiling: Taxonomy, state-of-the-art, and open research
issues, JNCA, 2015
• Hardware-based energy pro- filing schemes are

expensive, labor-intensive, and non-scalable
compared with software-based solutions
• Hardware-based energy profiling schemes are highly

accurate for the specific mobile device for which they
are developed, but worst accurate for other device
models
• Software-based energy profiling estimates battery

consumption at diverse granularities, such as process,
thread, function, line, or path, by maximizing
numerous power tracking resources
• The correctness of software-based energy profiling

designs is affected by the accuracy level offered by
the voltage and current sensors of the smart battery

execution on mobile phones, the energy profiler logs the execution
traces and energy footprints in either on-line (Lee et al., 2014) or
off-line (Brouwers et al., 2014; Conte et al., 1996) modes, as pre-
sented in Fig. 1. The off-line profiling mode uses a physical server
to correlate energy statistics with mobile phone-derived data. By
contrast, online profiling does not entail additional external
hardware resource for energy profiling, as depicted in Fig. 1
(Bernstein et al., 2013; Creus and Kuulusa, 2007; Das et al., 2013;

Lauridsen et al., 2014; Oliner et al., 2013; Ryan et al., 2014; Yoon
et al., 2012).

Figure 1 demonstrates design of hardware and software-based
energy profiling schemes. Hardware-based energy profiling para-
digm, as depicted in Fig. 1a, exploits external power measurement
equipment (e.g., multi-meter) to determine power drop-rate
across the battery terminals. Instead, software-based energy pro-
filing schemes use smart battery interface to capture the battery

Fig. 1. Hardware based vs. software based energy profiling.

Co-ordinator Energy-Logger Workload-Runner Analyzer Estimator

1. Prepare Workload

3. Activate Energy Logger

2. Run Workload

4. Stop Energy Logger

5. Stop Applications

7. Energy Logs

8. Activate

9. Transfer Energy Traces

10. Power Models

3.1 Time-
Stamped
Energy
Logging

6. Fetch Energy Traces

9.1 Power Model
Construction
Phase

11.1 App. Energy
Estimation12. Estimation Results

6.1 Time-Stamped Log

Time Line

11. Power Estimation

Mobile Component’s Power Model Construction Modules
App. Energy
Estimation

Fig. 2. Software based mobile application energy profiling sequence diagram.

R.W. Ahmad et al. / Journal of Network and Computer Applications 58 (2015) 42–59 45

discharge-rate as illustrated in Fig. 1b. Furthermore, the post-
processing on power logs assist to construct power models as
discussed in Fig. 2. Figure 2 determines a conceptual overview of
software-based application profiling mechanism, wherein, power
models are generated based on power log analysis. In the said
figure, coordinator module control and triggers the rest of the
modules to perform specific tasks. Energy logger continuously
records time-stamped power consumption statistics during
mobile application execution. In addition, Analyzer thoroughly
inspects energy-traces to build power models for application
power estimation.

3. Taxonomy of mobile application energy profiling schemes

This section highlights and discusses a thematic taxonomy for
the classification of mobile application energy profiling schemes.
We categorized the existing energy profiling schemes based on
their design pattern. Energy profiling schemes are classified into
two main categories: (a) software based and (b) hardware based.
The software and hardware based energy profiling schemes are
further categorized based on the common characteristics among
existing schemes. Common characteristics among software-based
energy profiling schemes include, granularity, model flexibility,
measurement source, and profiling type. Alternatively, the com-
mon characteristics among hardware-based energy profiling
schemes include, granularity, power model design, measurement
source, and execution environment, as illustrated in Fig. 3.

3.1. Software based profiling

Software-based energy profiling paradigm exploits a software
module to collect mobile component's power usage statistics to
construct power models to estimate application's energy con-
sumption. The attribute of granularity identifies the level at which
energy profiler estimates the mobile application's energy con-
sumption. The energy profiler estimates the application energy
consumption either at process, thread, path, or source-code line
level, as shown in Fig. 3. The model flexibility parameter specifies

whether the energy profiler requires application source-code to
profile application energy consumption or not. Alternatively, the
attribute of the measurement source specifies the method opted to
extract power consumption statistics to estimate the application
energy consumption. The profiling type metric specifies whether
the mobile application energy profiler exploits a dedicated phy-
sical server to analyse the collected power consumption statistics
to construct power models or uses mobile phone resources to
analyse the logged energy statistics. The detailed description of
aforementioned attributes is as given below.

Granularity indicates the extent to which an energy profiler
estimates the power consumption of an application. The attributes
of granularity include mobile application, application execution
path, thread, source-code line, function, burst, application com-
ponent, and process. Fine-granular (e.g., source-code line and
path) estimations result in high estimation accuracy compared
with coarse-granular estimations. However, fine granularity
requires the following: (a) extensive resource monitoring, (b) high
resource synchronization between application activities and the
updating rate of smart battery sensors, and (c) elongated mobile
application profiling time. Coarse-granular profiling (e.g., process,
thread, and function) requires the following: (a) low resource
monitoring, (b) limited profiling time, and (c) insufficient resource
utilization. Estimating power consumption at application granu-
larity supports ranking applications based on their power con-
sumption budget. Similarly, thread/function level energy estima-
tion provides the opportunity to optimize thread/function power
consumption to increase battery lifetime. Moreover, application
component level energy estimation such as GUI, logic compo-
nent, and content rendering, assists in optimizing application
power consumption at the sovereign component level. For exam-
ple, a gaming application consumes considerable energy while
rendering graphical objects. Optimizing gaming rendering feature
can also significantly augment mobile battery lifetime. Among
others, path attribute denotes the set of routines traversed during
an application activity (e.g., playing a video track). Burst attribute
identifies consumed energy while continuously transferring a
bunch of network packets using smartphone radio. When a user
wishes to estimate energy consumption for a specific use case of a

MOBILE APPLICATION ENERGY PROFILING
SCHEMES

Software Based Profiling Hardware Based Profiling

Granularity

Application
Path/Line
Process
Burst
Thread/Function/Component

Measurement Source

Smart Battery Interface
Nokia Energy Profiler
Program Analysis
Logging/Traces
BMU
Battery Usage Curve

Model Flexibility

Profiling Type

Dynamic

Static
On-line

Off-line

Granularity

Power Model Design

Measurement Source

Application
Path/Line

Process
Thread

Deterministic
Statistical

Data Acquisition Board
Back Light

Hewlet Packard 3548a
Agilent Multimeter

Execution
Environment

Automated
Manual

Fig. 3. Taxonomy of mobile application energy profiling schemes.

R.W. Ahmad et al. / Journal of Network and Computer Applications 58 (2015) 42–5946

Energy efficiency of various software
elements ... examples
• Vlad Christea: Energy Consumption of Applications on Mobile Phones,

M.Sc. Thesis, 2017 – energy usage of screen elements
• Dagnachew Temesgene: Cyber foraging for green computing,

improving performance and prolonging battery life of mobile devices,
M.Sc. Thesis, 2016 – energy usage of different functions of mobile
phones
• Mustaqim Rahman: Analysing API Calls to Reduce Energy

Consumption of Apps in Idle States, M.Sc. Thesis, 2017 –
benchmarking API performance

Interim conclusion

• Energy efficiency of software in different environments can be
measured BUT
• Results are highly contextual (environment)
• Results are hard to compare
• Energy efficiency is only one part of the picture

• Software is always tied to hardware
• Optimising energy efficiency now may have an effect on other sustainability effects

Jagroep et al.: Extending software architecture views
with an energy consumption perspective, Computing,
2016
• Software vendors are not able to address energy consumption on software level

• Energy consumption of software is measured by relating the energy consumption of hardware to
computational resource usage on behalf of the software and, consequently, energy efficiency refers to
the efficient use of computational resources

• Use energy profilers; software tools including a power model with the ability to estimate the software
EC on different levels of granularity, not always efficient

• Architecture Description (AD) of product software complemented with Energy Consumption
measurements, could help to direct green computing efforts (i.e. Energy Efficient (EE) algorithms)
and determine appropriate adjustments on the right locations
• creation of Energy Efficient software starts with the design of the software, i.e. with its architecture

Extending software architecture…

Following the format of the existing ISO 25010 standard we continue by proposing
sustainability as a QA and direct our focus specifically on the resource consump-
tion subcharacteristic. While resource consumption closely resembles the existing
‘resource utilization’ subcharacteristic, i.e. a specific resource (energy) is utilized,
there is a significant difference in focus between sole computational resources and
what we described as ‘sustainability’ [21]. The (sub)characteristics are not mutually
exclusive though, as the associated measures could be similar.

Since a SA allows or precludes nearly all QAs [2], the relation between sustainabil-
ity as a QA and our research is explained. Following conventions of the ISO 25010
standard, resource consumption should decomposed into quality properties comple-
mented by a measurement method to make the attribute measurable. From literature
study [4,11,16–18], software utilization, energy usage and workload energy were
distilled as potential quality properties:

– Software utilization is the degree to which resources specifically utilized on the
account of a software product meet requirements.

– Energy usage is the degree to which the amount of energy used by a software
product meets requirements.

– Workload energy is the degree to which the EC related to performing a specific
task using a software product meets requirements.

The first two properties represent the low-level measurements, whereas the latter is
used to characterize a software product in such a way that it facilitates discussion
between stakeholders [11]. Although further research into this matter is required, for
now we assume that these quality properties, representing four out of six metric types
identified in [4], cover the resource consumption subcharacteristic.

3.1 Quality measures for energy consumption

Unless (sub)characteristics can be directly measured, the measurable properties of
a system (quality properties) can be quantified using quality measures and measure
elements. Following the framework of the ISO 25010 standard consider the example
in Fig. 2, where the ‘sustainability’ characteristic is broken down to the level of quality
measure elements for the ‘workload energy’ property. To quantify ‘workload energy’,
the task energy consumption quality measure was identified along with three quality
measure elements for the measurement function.

Fig. 2 A partial breakdown of the sustainability characteristic linked to the ISO 25010 standard

123

Extending software architecture…

Fig. 3 Viewpoint catalog after [31], expanded with the flow of key questions to address EC concerns

tainability, among others EC, demands to their tenders. This demand is twofold. On
the one hand, there is an increased call for software to be developed in a sustainable
manner, on the other hand there is the focus on EC of the software product itself. Thus,
the contextual view should focus on answering how the software product can help in
achieving an organizational sustainability strategy.

Key Question 1 How can the software product architecture assist in achieving an
organization’s sustainability strategy?

One way to contextualize a sustainability strategy is to portray it as strategic goals
that should be met. For example, energy efficient software, does not only contribute
to sustainability goals, it also provides a means to lower the total cost of ownership
for a software product, i.e. it influences the economic aspects (cf. [4]).

In our case study (DG), a lower total costs of ownership enables the software
vendor to be more competitive in terms of pricing, and helps in realizing sustainability
targets like reducing carbon emissions. In terms of the quality measures (Table 1),
a reduction of SEC or UEC indicates a lower power consumption and thus reduced
carbon emission (not to mention the energy costs).

Operational viewpoint The operational viewpoint focuses on how the software is
executed, and is where the quality measure elements (Table 1) are measured. Changes
from this viewpoint are often system-wide strategies that address operational concerns.
Thus a first step to improve the EC, from this viewpoint, is to fine-tune the hardware
configuration.

Key Question 2 How can run-time aspects be fine-tuned to reduce EC?

However, as software products typically run on diverse platforms, the architect
should specify in this viewpoint which elements are to be recorded and how these
elements can be combined into the different measure elements. This leads to a second
key question in the operational viewpoint:

Key Question 3 How can we measure the EC of the different nodes the software is
executed on?

123

Kern et al.: Green software and green software
engineering–definitions, measurements, and quality
aspects, 2013
• Measurement of software
• Causes of energy consumption, complexities,

dependencies

• Energy efficient software
• Methodologies, designs, tools for improving

energy efficiency

• Green software and its engineering
• Software bloat vs. efficient code

• Green software reference model
• Metrics, Measurement challenges

Additionally, the model comprises Sustainable Criteria and
Metrics for software products. Especially regarding
measurements of common effects of software products, there
exist quality models and standardized metrics. By means of
these quality aspects, software can be revised. Indeed models
and characteristic numbers of directly and indirectly related
effects need to be developed by research initiatives. We will
present a first approach to do so in section 4.

.%($%&'(')&&',,--./0.)',&!&%&2'&'456&#'/9(0'

The third sub model contains procedure models, based on the
different usage types: Developers, purchasers, administrators,
and users. The proposed models can be implemented to support
the optimization of the different processes focusing on green and
sustainable software engineering. In that way, software
engineering should become green and sustainable in its
production, support, and application processes. Since the models
are general, they can be adapted to different contexts.

Finally, recommendations for action and tools are made
available to the different stakeholders. These parts comprise
checklists, guidelines, best practice examples, software tools, as
well as other tools (like paper"based data collection sheets).
These support stakeholders with different professional skill
levels in applying green or sustainable techniques in general,
when developing, purchasing, administrating, or using software
products. Possible roles are software developers, acquirers of
software, administrators, and professional and private users [21].

The different aspects of green and sustainable software
engineering are summed up in the following definition: “!"##$%
&$'%()*+&,$&-.#% (/0+1&"#%2$3,$##",$3 is the art of developing
green and sustainable software with a green and sustainable
software engineering process. Therefore, it is the art of defining
and developing software products in a way, so that the negative
and positive impacts on sustainable development that result
and/or are expected to result from the software product over its
whole life cycle are continuously assessed, documented, and
used for a further optimization of the software product.” [9]

1<! 2>?@A)3'40C-@'.0,',,--.'?.C'
/>/)?A.?D@-'/0.)E?,-''
In order to decide if a software is green and sustainable or not,
appropriate criteria and metrics are required. A first approach of
these is covered by the Quality Model for Green and Sustainable
Software, presented in the following section.

1<(! F%% &%%H'
Overall, the different aspects can be classified in common,
directly, and indirectly related criteria and metrics, as pictured in
our Quality Model for Green and Sustainable Software (Figure
2). Regarding the GREENSOFT"Model, described in section 3,
the model goes into the sub model “Sustainability Criteria and
Metrics”.

.%($%&'9'2$H#% I'456&#'!5%',%&&2'H26'/$J H%2H"#&'/5! LH%&'

In the following, we will present a first approach to developing a
Quality Model for Green and Sustainable Software. In order to
create the model, we will discuss different publications
regarding quality aspects, criteria, and indicators for sustainable
software. These will be compared, combined, and summed up in
the proposed model. This first approach intends to get an
impression and overview of possible criteria. As a next step, the
aspects should be prioritized, completed by tangible examples
and discussed properly.

45656! 7/88/$%9)&.,+:%7",+#",&%
The common criteria arise out of the well"known and
standardized quality aspects for software, issued by the
International Organization for Standardization [16]. The
proposed Quality Model takes aspects, like 200,;,#$;:< into
account as well as e. g. =#)*&-,.,+:, >/',0,&-,.,+:, and ?*&-,.,+:.
These quality aspects reach into the field of SD [3].
The quality aspects belonging to efficiency, next to 2$#"3:%
200,;,#$;:, are =)$+,8#% 200,;,#$;:, 7 ?!"$+#$*,+:, >#8/":%
?*&3#, #",#$#"&.% "$+#$*,+:, "'.#$#**, and %)8-#"%/0%>#+$/'*.
In this case, "'.#$#** describes how often the system is idle. This
aspect is only relevant to certain types of software systems, such
as virtual servers [29]. The total %)8-#"%/0%>#+$/'* reflects the
size of applications [7].

4565&! ',"#;+.:%"#.&+#'%7",+#",&%
In contrast to these efficiency criteria, which can be considered
as indicators for 2$#"3:% 200,;,#$;: [19, 33], the energy
efficiency of a system itself can be ranked against a reference
system [10, 32]. Hence, the quality aspect 2$#"3:%200,;,#$;: is
assigned to the directly related criteria [21]. It is the same for the
criteria ("&8#1/")%2$+"/#: and ()$;+,/$&.%*:##*, presented by
Capra et al. [7]. The ("&8#1/")%2$+"/#: represents the grade of
usage of external libraries and high level constructs. It is high, if
the usage of external sources is high. The different types of
applications are indicated by the criterion ()$;+,/$&.% *:##*,
since different functional types of applications have different
levels of energy efficiency [7].

89

Procaccianti et al.: The Green Lab:Experimentation in
Software Energy Efficiency, 2015

• Software Energy Efficiency is a research area that lacks well-defined,
validated methods
• Chaotic behavior
• Complexity of measurement
• Anecdotal and contradictory evidence
• Lack of a unified approach

• How to combine the traditional hypothesis-driven (top-down)
approach with a bottom-up discovery approach
• Energy hotspots
• Energy bugs
• Energy smells

Capra et al.: Is software “Green”?, Information and
software technology, 2012

• A higher use of application development environments has a
detrimental effect on software energy efficiency
• small to average size applications the use of application development

environments is associated with greater software energy efficiency, but that
for larger applications the opposite is true

• The detrimental effect of using application development
environments on energy efficiency is more pronounced for larger
than for smaller applications
• large application typically oc- curs by embedding initial modules inside other

larger modules. This may unnecessarily increase the number of layers that
must be crossed to execute a single operation

resources have been measured (mr) by a metric of certain
type. Let MRT be the number of measured resources asso-
ciated to a certain type and R the total number of measured
resources, TCmr is calculated as follows:

TCmr =
MRT
R

⇤ 100

Then, we show which resources can be measured in di↵erent
ways, by metrics of di↵erent type.
Energy type metrics are used to measure the majority of
the elicited resources. Indeed, 16 out of 25 extracted re-
sources have been measured by metrics of type Energy. This
value shows that energy consumption and energy saving can
be measured from several perspectives.
Utilization type metrics are used - by definition - to mea-
sure resources such as memory, CPU and storage. Indeed,
18 metrics of Utilization type are distributed among these
three resources, with the exception of the Application Per-

formance metric, proposed by Kipp et al. in [19], that pro-
vides a value for comparison of di↵erent IT service centers
against performance values according to the energy con-
sumption and performs the measurement on the whole Ser-
vice Center resource.
Metrics of Performance type are mainly focused on mea-
suring performance dimensions related to services. However,
some Performance metrics are also designed to measure IT
resources, such as CPU, and the performance of a system or
an application.
As expected, Economic metrics are designed to measure
costs, terms of revenue from, expenses for regulations com-
pliance and organization expenditures.
Examining the type coverage of the mentioned resources, we
figured out the some resources can be measured by metrics
of di↵erent type.
For example CPU is measured by 5 Utilization metrics, 1
Energy metric and 1 Performance metric. In case of Utiliza-
tion, CPU is measured in terms of the percentage of time
that the allocated CPU spends for processing the instruc-
tions of the applications. Regarding to Energy type, the
metric estimates the energy consumption of the CPU with
respect to its utilization. In respect of Performance type,
CPU and disk I/O operation are measured together, getting
an overview over the CPU utilization and the amount of
Disk I/O operations. Memory resource is a further exam-
ple of resource that is measured in di↵erent way. Although
it is mainly measured by IT Resource metrics, Memory is
measured to estimate the energy used by the memory itself
during writing and reading operations.
We depicted the overlap among types and measured re-
sources in Figure 3.
To create this figure, we sorted the Metric Types with re-
spect to their TCmr value, and then we selected those mea-
sured resources that have been measured by more than one
Metric Type. Hence, we created the set of measured re-
sources for each selected Metric Type and we showed the
intersections among these sets, confirming that IT resources
such as CPU and Memory are the resources that are mea-
sured by the most relevant types. Furthermore, we proved
that those resources are measured to obtain values in terms
of energy consumption and performance.
Finally, we can state that resources are mostly measured to
evaluate energy consumption (or saving), to assess energy
e↵ects on performance and to monitor IT resources utiliza-

Figure 3: Development process after separation be-

tween Metrics Group and Development Group.

tion.

4.3 Which types are more appealing for each
context?

In this section, we want to show which kinds of result are
more interesting with respect to the context which the met-
rics belongs to. In other words, we want to illustrate what
kind of metrics is more appropriate regarding to the envi-
ronment in which they are involved.

Contexts

Types A
p
p
li
ca
ti
on

A
rc
h
it
ec
tu
re

D
at
a
C
en
te
r

D
B
M
S

E
m
b
ed

d
ed

S
of
tw

ar
e

S
er
ve
r

S
er
v
ic
e

S
er
v
ic
e
C
en
te
r

V
ir
tu
al

M
ac
h
in
e

C
T

T
C

c
(%

)
Energy 13 17 2 0 3 1 2 1 9 8 89
Performance 5 0 1 1 0 0 10 2 0 5 56
Economic 7 0 0 0 0 2 0 0 0 2 22
Performance
/ Energy

0 0 1 0 0 0 0 0 1 2 22

Utilization 9 0 0 0 0 0 0 8 0 2 22
Pollution 0 0 0 0 0 0 1 0 0 1 11

Table 16: Relation between metrics types and con-

texts.

First, we defined and analyzed the type coverage for contexts
(TCc), which is the index representing how many contexts
(c) have been explored by metrics of certain type. Let CT
be the number of contexts associated to a certain type and
C the total number of contexts, TCc is calculated as follows:

TCc =
CT
C

⇤ 100

As shown in Figure 4, Energy type is associated to every
contexts but DBMS. In each of them, energy consumption
is one of the most important dimension to be measured.

Bozzelli et al.: A SLR on green software metrics,
2014

• What green metrics have been proposed in the
Software Engineering literature?
• How green metrics can be classified?

Metrics Type Total Measurement

Unit(s)

Energy 48 Joule (J), Index,
Watt (W),
Ampere (A)
Kilowatt-hour
(kWh), Number,
byte/kWh

Performance 19 GFLOPS/kWh,
Computing
Unit/kWh,
Percentage (%),
Seconds (s),
Index, Number

Utilization 17 Percentage (%),
Megabyte (MB),
Megahertz
(MHz), GB/s

Economic 9 Dollars ($)
Performance / Energy 2 GFLOPS/Watt,

Index
Pollution 1 CO2 units

Table 8: Found metrics designed for measuring soft-

ware energy consumption

metrics.
Among these metrics, 66 are relevant for measuring soft-
ware energy consumption (SR metrics) and they are listed
and briefly described in Appendix A. Remaining 29 met-
rics, elicited and described in Appendix B, are not directly
defined to measure the software energy consumption (NSR
metrics), although they are discussed within studies related
to green software metrics.
Since we are interested in metrics that measure the energy
consumption of software, hereafter we deal with SR metrics
only.

3.3 Metric types
In this subsection, we discuss about the type of extracted
SR metrics. For each SR metrics, we provide a description,
an exemplifying metric of that type, and the related mea-
surement unit(s) used to express results.
Table 8 shows how many metrics have been classified by
means of a certain type – which is the kind of results gen-
erated by the measurement – with the related measurement
unit. In this section, we provide a detailed description of
each type listed in Table 8. Moreover, we explain how
measurement results are expressed describing measurement
units related to each Metrics Type.
Energy type defines metrics designed to measure power and
energy consumption (or saving). An Energy metric can be
used to perform evaluations on software components, as well
as it can be used to estimate software energy consumption
at the architectural level. For example, the Application Per-

formance metric, claimed by Kipp et al. in [18], is classified
as Energy type because it measures energy consumption per
computing application unit.
The results of measurements performed by metrics of this
type can be expressed by means of several units.
Energy type measurement results can be expressed by means
of the following units:

• Joule (J), which is a derived unit of energy, according
to the SI10;

• Index, which is a generic measurement unit that can
be defined as follows:

– A metric is explicitly given as an index, e.g. the
Workload metric claimed by Kipp et al. in both
[17] and [18];

– A metric depends on two or more dimensions to
be evaluated, e.g. the Execution Plan Energy Ef-

ficiency metric proposed by Ferreira et al. in [26],
which depends on the execution time dimension
(expressed in Seconds) and the energy consump-
tion dimension (expressed in Watt-hour – Wh –
or KiloWatt-hour – KWh).

• Watt (W), which is a unit that indicates the power
that in one second gives rise to energy of 1 joule, ac-
cording to the SI;

• Ampere (A) that is the unit of electric current;

• Kilowatt-hour (kWh), which is a unit of energy equiv-
alent to one kilowatt of power expended for one hour
of time;

• Number, which is a unit that enumerates the items
under validation;

• byte/KWh, which expresses the ratio between of work
output and the consumed electric energy.

Performance type defines metrics proposed to measure
performance indices, e.g. throughput, response time. To
show a valid example, we can refer to Throughput metric,
claimed by Kipp et al. in [18]. Throughput metric is classi-
fied as Performance type because it measure a performance
index, that is The number of service requests served at a
given time period.
Performance metrics express results in terms of the following
units:

• GFLOPS/KWh that measures the ratio between the
computing performance (GFLOPS, GigaFLOPS or 109

FLOPS) and the related power consumed in a period
of time (KWh);

• Computing Unit/KWh unit, which represents the
energy consumption generated by each computing ap-
plication unit;

• Percentage (%), which may be a rate, number, or
amount expressed in each hundred;

• Seconds (s) that is the unit of time, according to the
SI;

• Index (see description above);

• Number (see description above).

10International System of Units, SI, provided by
the Bureau International des Poids et Mesures.
http://www.bipm.org/utils/common/pdf/si brochure 8 en.pdf

Data Center context contains all those metrics that per-
form measurements of the impact of data storing and re-
trieval on a data center. For instance, the Data Centre En-

ergy Productivity (DCeP) metric introduced by Laszewski
and Wang in [35] belongs to the Data Center context be-
cause it measures the number of bytes that are processed
(useful work) per kWh of electric energy with respect to the
whole data center.
Embedded Software context contains metrics that are
used to perform evaluations or estimations on software that
interacts directly with the physical world, e.g. the Executed

Instructions Count Measure (EIC), claimed in [7] by Chatzi-
georgiou and Stephanides, belongs to this context because it
evaluates the energy consumption dealing with the number
of executed assembly instructions and considering a typical
embedded integer processor core.
Server context includes metrics that perform measurements
on the impact of application, service or data processing on a
server machine. Although this context may enclose both the
Service Center and the Data Center contexts, we specify the
Server context as a separate context in order to classify those
metrics that have been claimed without any precise defini-
tion of their environment, but that are related to servers. A
valid example of a metric fitting with the Server context is
the Server Power Utilization metric, claimed by Gmach et
al. in [13], which evaluates the amount of power used by a
server with respect to the server CPU utilization.
DBMS context describes all those metrics that are designed
to measure the energy cost of data storing and retrieving
operations. Metrics belonging on this context are mainly
focused on the calculation of energy consumption generated
by queries and they can be used for optimize query struc-
tures, in order to guarantee energy savings. For example,
the Aggregated Cost metric proposed by Xu in [24] belongs
to the DBMS context because it evaluates a power-aware
query plan, in order to improve the energy e�ciency of the
executed queries.

3.5 Measured resources
In this seaction we describe in detail the resources on which
measurements are performed by means of SR metrics. For
each resource, we provide a brief textual description of the
resource, the way the resource is measured, and an example
that shows how a metric measures a resource.

Connectors and components of software architecture define
Architectural Elements resource. They are measured in
several ways, according to the related architectural style, in
order to perform energy consumption estimation. For exam-
ple, the Remote Client Energy Cost metric – claimed by Seo
et al. in [31] – estimates the energy consumption of a client
connector due to sending requests and receiving responses.
Application resource is a program or piece of software de-
signed and written to fulfill a particular purpose of the user.
It is measured in terms of workload, runtime platform con-
figuration, request type and rate, data exchange, and power
consumption. For example, the First Order Software Energy

Estimation Model, proposed by Sinha and Chandrakasan in
[34], measures the amount of electricity consumed by a pro-
gram during its execution.
We define Service resource as a set of units of functionality
that are unassociated and loosely coupled, have no calls to
each other embedded in them, implement one single action.

Measured resource Total

Architecture Elements 17
Application 13
Service 11
Financial Impact 9
Memory 9
CPU 7
Storage 5
Virtual Machines 5
Source Code 3
Data Center 2
Power 2
Process 2
Service Center 2
Service Execution Path 2
DBMS 1
IT Resource 1
JVM 1
Network 1
Pollution 1
Server 1
System 1

Table 10: Resources measured by SR metrics.

It is measured in terms of performance, e.g. availability,
response time, or reliability. For instance, the Throughput

metric, proposed by Kipp et al. both in [17] and in [18],
measures the number of service requests served in a given
time period.
We define Financial Impact as the expenditures or re-
ceipts generated by the adoption of a certain solution. It
is measured with respect to: energy consumption or saving,
application lifecycle, and regulations compliance. One rele-
vant example for measured expenditures is the Compliance

metric, claimed by Kipp et al. in [18], which represents
the cost of guaranteeing conformity degree about regula-
tions and policies established by third parties. By contrast,
a significant instance of income measurement is the Aver-

age Revenue metric proposed by Mazzucco and Dyachuk in
[24], which defines the average profit generated by success-
fully processed jobs against energy consumption costs.
Memory resource is defined as random-access memory units
used to store and retrieve non-permanent data. It is mea-
sured as bytes of occupied memory or the percentage of
RAM utilization for storing/retrieving operations. For in-
stance, the Memory Energy Model, claimed by Kansal et al.
in [16], estimates the energy consumed by the memory over
a given time duration.
The CPU (central processing unit) resource is the responsi-
ble of interpretation and execution of program instructions.
It is possible to measure its utilization or to evaluate the
maximum allowed clock frequency with respect to prede-
fined thresholds. For example, the Application Server Usage

metric, proposed by Kipp et al. in [19], allows getting an
overview over the CPU utilization and the amount of disk
I/O operations.
Storage is intended as a nonvolatile memory of large amounts
of information in electronic form. It is measured in terms
of bytes occupied on storage devices, energy consumption
generated by writing and reading operations or percentage

Figure 1: Trend of metrics types from 2001 to 2012.

Figure 2: Trend of metrics contexts from 2001 to 2012.

Years
Metrics Type 2001 2002 2008 2009 2010 2011 2012 Total

Energy 2 3 21 4 8 5 5 48
Performance 0 0 0 0 2 10 7 19
Utilization 0 0 0 0 3 10 4 17
Economic 0 0 0 0 0 4 5 9
Performance / Energy 0 0 0 0 0 1 1 2
Pollution 0 0 0 0 0 1 0 1

Table 12: Number of metrics, claimed during the last decade, sorted by type.

Ardito & Morisio: Available data and guidelines for
reducing energy consumption in IT systems, Sustainable
computing: Informatics and Systems, 2014
• Energy efficiency guidelines (complex)

• Infrastructure …
• Application

• Design efficient UI - simplified interaction
• Event based programming – sleeping
• Low level programming – use of system optimization
• Batch II/O – sleeping
• Code migration – optimized execution
• Reduce data redundancy – storage and transfer optimization
• QoS scaling – behavior change
• Profiling tools – optimization

• Operating systems
• Power management
• Optimal use of peripherals
• Compiler optimization
• Background process optimization

• Hardware …

Sustainability within software engineering
process

Naumann et al.: The GREENSOFT Model, Sustainable
computing: Informatics and Systems, 2011

• “Green and Sustainable Software” and “Green and Sustainable
Software Engineering”

S. Naumann et al. / Sustainable Computing: Informatics and Systems 1 (2011) 294– 304 297

Fig. 1. The GREENSOFT Model, a reference model for “Green and Sustainable Software”.

Fig. 2. Cradle-to-grave inspired product life cycle for software products, attributed to exemplary sustainability relevant effects of ICTs.

300 S. Naumann et al. / Sustainable Computing: Informatics and Systems 1 (2011) 294– 304

Fig. 3. Example for enhancing software development processes that fits into the procedure model part “Develop” [29].

It should be mentioned, that this procedure model sets only an
organizational framework that helps managing sustainability of a
software product. Thus, there is no guarantee that the resulting
software products are more sustainable than they would have been
without applying this process.

Besides reflecting the proposed life cycle of a software product,
there are further methods that support software architects, design-
ers, and developers in producing green and sustainable software
applications. On the one hand, there are tools that automatically
calculate software metrics from source code or compiled artifacts.
As was shown above, these metrics and their corresponding qual-
ity properties can also be interpreted regarding sustainability. On
the other hand, producing ecologically sound, resource and energy
efficient software is also an issue nowadays. For this purpose early
processing time estimations, energy consumption estimations, and
energy consumption measurements may be appropriate.

Early processing time estimations can be obtained from a soft-
ware performance estimation method, introduced by Smith and
Williams [52]. This method estimates performance values already
in early design stages of a software product. It starts with rough esti-
mations based on early UML sequence diagrams [53] and refines
these estimations as the UML model evolves. This results in a
so called software execution model. The system execution model
models the target hardware platform with its limited resources (e.g.
CPU cores, net IO, disk IO). The software execution model can be
applied to the system execution model with a discrete event simu-
lator in order to get performance estimations for realistic workloads
[52]. This approach helps to design software architectures that per-
form well on a specific hardware platform, and it helps to identify
design flaws that reduce runtime efficiency. Currently, there is no
software tool available that allows the estimation of energy con-
sumption in these early design stages. So we recommend using
the software performance approach as an indicator of energy
efficiency.

In a software project, when the first deployable software arti-
facts are available, it is easily possible to measure their energy
consumption, either by measuring the energy consumption directly
[39] or by using performance monitor counters of modern proces-
sors as indicators [40]. These measurements complement the early
estimations and can provide further indications on software com-
ponents that induce high energy consumption and should therefore
be optimized with priority.

Based on these software architecture and software development
centric measures, software developing organizations should also
estimate the total energy and resource demand that is expected

according to their projected number of installations or sales fig-
ures of a specific product and associated estimated usage scenarios.
These estimations should not only include first-order impacts of the
usage phase, but also first-order impacts of the other phases, espe-
cially of the distribution phase. As a further step and depending on
the type of software, it may also be possible to estimate second-
and third-order impacts respectively. These can be used to sub-
stantiate the necessity to improve the sustainability of a software
product from a broader point of view.

4.4.2. Sub-procedure model “Purchase”
Our outline of an exemplary procedure model that fits into the

Purchase category focuses mainly on governmental organizations
and large enterprises that use structured tendering procedures in
large scale procurement projects. Especially the large market power
of governmental organizations should not be underestimated and
can be used to pursue sustainability goals according to national (e.g.
[54]) and international agreements (e.g. [55,56]).

A typical procurement process has the following steps: define
subject matter, define requirements, select bidders, evaluate bids,
and conclude contract [51,57]. Due to legal reasons, it is necessary
that sustainability issues, i.e. ecological and social requirements,
are clearly stated in the tender’s subject matter, in specifications
and in contract performance clauses [57]. Furthermore, the entire
product life cycle of the software product should be addressed,
as well as the entire supply chain. Our proposal for a sustainable
software procurement process can be divided into two fields: the
procurement of custom software products and the procurement of
standard software products.

In both scenarios, bidders should, in principle, be able to deliver
the requested product in the required quality. Hence, bidders may
be preselected with appropriate criteria, like the company’s social
and environmental responsibility (e.g. expressed in environmental
and social responsibility statements), their commitment to inter-
national labor standards [50] or the application of environmental
management systems [51].

For custom software products, non-functional requirements
like energy efficiency or requirements addressing mitigation of IT
infrastructure obsolescence, which may be induced by the tendered
software product, can be defined. However, it is necessary to pro-
vide applicable measurement methods and acceptable maximum
measurement values for bidders. From a practical point of view, this
is only possible if a comparable software product is available that
can be used as reference, e.g. if a legacy software system is replaced
with a new one. If such values cannot be provided, purchasers

Figure 2: A proposed Sustainability model

have a direct impact on sustainability: software operation (e.g.,
energy consumption, energy features, the execution environment)
and software development (e.g., develop for energy e�ciency).
Second, we discussed the following issue related to energy e�-
ciency:

“Any research about measuring energy-e�cient code is wrestling
with the isolation of the respective software components from the
environment it runs in. There are many influences from the hard-
ware, software and even lighting and temperatures in the server
room, which impact measurements.”

The discussion group identified that the needs are stable reference
models and a definition of the unit of measurement (e.g., grams of
CO2). That is, before starting any major measurement e↵ort the
requirements for future comparisons should be defined including
the part of sustainability to be addressed. In this concern, the
group identified the following practical challenge: in many cases
the software is embedded in an environment one cannot access.
For example, a server where one cannot go inside the box to get
the desired measuring points.

Based on the experiences of the participants in the group one
broad and interesting conclusion emerged: Identify program code
that is wasting energy and include this knowledge in the soft-
ware development guidelines such that non-energy-e�cient code
is avoided. This will allow developing software by observing an
energy saving discipline - avoiding bad habits and bad code -
and will allow going somewhat around the mentioned compli-
cated measurement challenges. Therefore, the group identified
future research topics. In particular, the participants believed
that future research should focus on the analysis of code (in any
environment), which is not energy-e�cient and on the develop-
ment of guidelines, tips and tricks to avoid this kind of code.

Other results of the discussions. Research would have to go
on to measure software energy footprints. Two identified possi-
bilities are: (1) software energy labels and (2) green Service Level
Agreements (SLA). One relevant challenge is to make the soft-
ware developers aware that there could be an energy consumption
problem.

3.3 On Green Metrics and Measures
The goal of the group was to discuss measures and metrics for
green software. The group decided to organize green metrics in a
general framework, that is presented in Figure 2. Interestingly, the
framework is very similar to the one developed by the other group
and presented in Figure 1. The core of the model uses four sus-
tainability views (business, technical, environmental and social).
Each view is a starting point to define related green measures.
However, it is not possible to define measures that are suitable to
all cases. The context of each case has to be taken into account to
define the relevant metrics. The context is represented in the left-
most part of the figure. The context is defined in terms of appli-
cation domain (i.e., industry, banks, insurances, health, etc.) and
application or service (i.e., account management or investment
management in the banking domain, warehouse management or
order management in the industry domain, and so on). The defi-
nition of the measures depends also on the stakeholders involved.
This is represented in the rightmost part of the figure. The stake-
holders identified are end user, project manager, commissioner,
and legislator. The set of stakeholders partially overlaps with the
ones defined by the group of stakeholders, and clearly the two sets
should be merged. Given a context as defined above, it is then
possible to specialize a set of measures. The group proposed a
generic and high level set of measures. Regarding the business
view, the families of measures proposed are cost (in terms of the
various stakeholders, such as end user, commissioner, etc) and
value (especially for the end user and commissioner). Regarding
the technical view, the families of measures proposed are the tra-
ditional ones (aka ISO 25010), such as functionality, reliability,
usability etc. At this regard, some of the measures can be cou-
pled directly with the environmental ones. For instance, energy
consumption in terms of Watt-hours can be considered at appli-
cation level, or at function level. Regarding the environmental
view, the main measures proposed are consumption (in terms of
energy, power) and polluting emissions (such as CO2). In sum-
mary, given the proposed framework, the group suggests adapting
the measures proposed considering the specific context.

4. ACKNOWLEDGMENTS
GREENS is part of the dissemination activities of the Dutch
Knowledge Network Green Software, and the European Fund for
Regional Development under project MRA Cluster Green Soft-
ware. We extend our thanks to those who have participated in
the organization of the workshop, and particularly the program
committee members. We also thank the participants in the dis-
cussion groups at GREENS 2013. The list of participants can be
found in the GREENS website http://greens.cs.vu.nl.

5. REFERENCES
[1] P. Lago, R. Kazman, N. Meyer, M. Morisio, H. A. Müller,

F. Paulisch, G. Scanniello, B. Penzenstadler, and
O. Zimmermann. Exploring initial challenges for green
software engineering: summary of the first GREENS
workshop, at ICSE 2012. SIGSOFT Softw. Eng. Notes,
38(1):31–33, Jan. 2013.

[2] P. Lago, N. Meyer, M. Morisio, H. A. Müller, and
G. Scanniello. 2nd International Workshop on Green and
Sustainable Software (GREENS 2013). In Proceedings of
International Conference on Software Engineering, pages
1523–1524. IEEE/ACM, 2013.

[3] C. Pettey. Gartner estimates ICT industry accounts for 2
percent of global CO2 emissions.
http://www.gartner.com/newsroom/id/503867.

View publication statsView publication stats

Lago et al.: Leveraging “Energy Efficiency to Software
Users”, GREENS/ICSE, 2013
• Social, environmental, economic, technical sustainability

dimensions
• A framework framing green software quality

• green concerns - potentially impact all other system qualities,
demanding for an additional dimension that frames both types
of qualities for trade-offs analysis and decision making

• The role of stakeholders – what stakeholders matter in
software sustainability

• Green trade-off analysis - spans all four sustainability
dimensions

• Sustainability goals and design concerns
• all sustainability dimensions should be made explicit in the same

way as they are for (technical) design and architectural concerns
• Environmental sustainability needs context

Lago et al.: Framing sustainability
as a property of software quality,
CACM, 2015
• Framework by extending an existing model,

the Third Working Draft of ISO/IEC 42030
Architecture Evaluation

• Traditional software decision making con-
siders trade-offs either between different
technical sustainability criteria (such as
performance versus availability) or between
technical sustainability criteria and
economic sustainability criteria (such as
performance versus costs)

• Sustainability-related software decision
making involves trade-offs between
environmental sustainability criteria (such
as energy efficiency) and social, economic,
and technical sustainability criteria

72 COMMUNICATIONS OF THE ACM | OCTOBER 2015 | VOL. 58 | NO. 10

contributed articles

capital and financial value.
An evaluation criterion can be a

quality requirement, as in Figure 1. In
particular, as we focus on character-
izing sustainability-related software
qualities, we address how quality re-
quirements relate to sustainability, or
“sustainability quality requirements.”
In this context, requirements could in-
clude both traditional quality require-
ments (such as performance, usability,
security, and maintainability) and sus-
tainability-related requirements (such
as energy efficiency).

Whenever we specifically target sus-
tainability, as in Figure 1, where the
association aims to link the evaluation
objective to the sustainability dimen-
sion, software developers must resolve
trade-offs among the various qualities
classified as belonging to each of the
four dimensions. In particular, tradi-
tional software decision making con-
siders trade-offs either between dif-
ferent technical sustainability criteria
(such as performance versus availabil-
ity) or between technical sustainability
criteria and economic sustainability
criteria (such as performance versus
costs). In contrast, sustainability-relat-
ed software decision making involves
trade-offs between environmental
sustainability criteria (such as energy
efficiency) and social, economic, and
technical sustainability criteria.

To frame software qualities this way
we position them in the four sustain-
ability dimensions and relate them
to the concerns of the relevant stake-
holders. For the sake of simplicity,
this information is not included in the
case-study examples, though the de-
scription of a paper-mill control sys-
tem refers to three main stakeholders:
surrounding community and society at
large (concerned about environmental
sustainability like forest sustainabil-
ity); customers (concerned about eco-
nomic sustainability like production
savings expressing productivity and
economic value creation); and produc-
ing organization, including managers
and engineers (concerned about tech-
nical sustainability like optimization
of configurability and performance).

Moreover, interdependent quality
requirements may influence one an-
other, as in association/association-
class influences among sustainability
quality requirements; for example, in

dress second-order effects,13 or those
of a software system in its operational
context, as with, say, how a car-sharing
service used by many users over a num-
ber of years affects the surrounding en-
vironment.

Our contribution is a sustainabil-
ity analysis framework that aids prac-
titioners exploring software qualities
related to the four dimensions and
explicitly representing dependencies
among the dimensions. To illustrate
the application of this framework we
offer two case-study examples from dif-
ferent domains.

Sustainability Analysis Framework
The framework aims to capture the
relevant qualities that characterize
sustainability concerns of software
systems, helping identify how these
qualities influence each other with
respect to the different aspects of sus-
tainability (see the sidebar “Software
Sustainability”). Software qualities as
nonfunctional properties have been
studied and adopted in software engi-
neering. In particular, various meth-
ods for quality evaluation in software
architecture have been defined to sup-
port holistic reasoning and decision
making that involve software, hard-
ware, human, and system elements.
We exploited this holistic approach,
defining our framework by extending
an existing model, the Third Work-
ing Draft of ISO/IEC 42030 Architecture
Evaluation,14 as outlined in Figure 1.
The blue boxes denote generalized pre-

existing components from the working
draft. While the draft specifically tar-
gets evaluations, the potential context
of the framework is broader, embrac-
ing any activity that relies on a sound
representation of qualities, including
requirements engineering, design de-
cision making, trade-off analyses, and
quality assessment.

The following paragraphs describe
the dimensions used in the framework
to characterize sustainability in the
context of software-intensive systems:

Social sustainability. Social sustain-
ability focuses on ensuring current
and future generations have the same
or greater access to social resources by
pursuing generational equity. For soft-
ware-intensive systems, it encompasses
the direct support of social communi-
ties in any domain, as well as activities
or processes that indirectly create ben-
efits for social communities;

Environmental sustainability. Envi-
ronmental sustainability aims to im-
prove human welfare while protecting
natural resources; for software-inten-
sive systems, this means addressing
ecological requirements, including en-
ergy efficiency and creation of ecologi-
cal awareness; and

Technical sustainability. Technical
sustainability addresses the long-term
use of software-intensive systems and
their appropriate evolution in a con-
stantly changing execution environ-
ment; and

Economic sustainability. Economic
sustainability focuses on preserving

Figure 1. Framework for sustainability software-quality requirements.

Evaluation
Objective

aims at

Environment

Social
Sustainability

Environmental
Sustainability

Technical
Sustainability

Economic
Sustainability

Sustainability
Dimension

Sustainability
Quality

Requirement influences

aligned with

StakeholderConcern

<<influences>>
Evaluation
Criterion

described
from* * < belongs to *

< has*

*

*

*

*

*

OCTOBER 2015 | VOL. 58 | NO. 10 | COMMUNICATIONS OF THE ACM 75

contributed articles

per ton of pulp in 1970 decreased to
less than 50 cubic meters per ton and
in some mills below even 10 cubic
meters per ton. The number of em-
ployees in Swedish plants (Sweden
is a major pulp and paper producer)
decreased over 75%, though their
qualifications increased; today, over
50% of employees are highly quali-
fied engineers and technical special-
ists. Production in such plants has
increased dramatically, by at least 10
times in the past 30 years.a The main
concern for mill owners today is en-
ergy savings, including energy for
the technological process (such as in
cooking paper pulp) and energy for
the PCS. This gives environmentally
sustainable software a double role:
decrease energy consumption of the
PCS itself, which is distributed and
complex, with many devices, and de-
crease energy consumption of the en-

a According to an internal ABB report, 2007.

to make a short- and long-term plan
for requalification of employees, and
the local society (typically a munici-
pality or county) would need to take
responsibility for retraining people.
Increased education level would im-
prove environmental sustainability
awareness. Such awareness is an ex-
ample of a horizontal relation. An ex-
ample of a vertical relation in the en-
vironmental dimension involves the
following operating environment. A
company might deploy new technolo-
gies that leads to less water pollution
and greater effectiveness of the pro-
cess that leads to increased environ-
ment sustainability (in terms of clean-
er water, less energy, reduced forest
resources, and forest regeneration).
However, such results would require
a wise trade-off between increased
production, in terms of scalability,
performance, and configurability,
and economic and environmental re-
quirements; for example, increased

tire production system through smart
algorithms and energy-efficient tech-
nologies controlled by software. Con-
sequently, the survival of paper-mill
companies in Sweden (and world-
wide) depends on all four sustainabil-
ity dimensions, driven primarily by
customers and competitors but also
by society, including towns, cities,
and municipalities, as well as the en-
tire country.

Figure 2 includes example sustain-
ability quality requirements, sorted
by sustainability dimensions and
the relations among them. We dis-
tinguish between vertical (within a
dimension) and horizontal (between
dimensions) relations. The social di-
mension refers to the changes in the
infrastructure in the companies and
in society needed to support require-
ments for employee skills. A company
would need highly educated people,
putting demand on their supply from
society. The company would need

Figure 3. Sustainability quality requirements: car-sharing platform.

Well-designed
application

+ ease of use

+ reliability

+ efficiency

+ maintainability

– benchmark
ease of use

– benchmark
efficiency

– benchmark
maintainability

High usage
of service

+ number of users

+ number of cars

+ maintenance
costs

– calculate
profit/user

– calculate
costs/car

– calculate profit

Well-working
GPS functionality

+ signal

+ data rate

– energy
consumption

– check coverage

Car sales

+ number of sales

– calculate profit

Profits from
users

+ number of users

+ memberships

– calculate profit

Car sharing
community
acceptance

+ customer
satisfaction

– customer
surveys

Low resources
consumption

+ number of cars

+ number of
maintenance
requests

+ produced
emissions

+ consumed
energy

– calculate
consumption

Energy savings

+ cars

+ server

+ client apps

– average user
consumption

– calculate
consumption

<<influences>>
conflicts

<<influences>>
supports

<<influences>>
supports

<<influences>>
supports

<<influences>>
supports

<<influences>>
conflicts

Public
acceptance
of service

+ number of users

+ number of cars

– average
usage/user

– average
usage/car

<<influences>>
supports

Social Environmental Technical Economic

contributes to > contributes to > < contributes to

< contributes to

Condori-Fernandez & Lago:
Characterizing the contribution of
quality requirements to software
sustainability, JSS, 2018
• Key challenge for software sustainability is its

characterization as a software quality requirement

• Software quality characteristics defined by the
ISO/IEC 25010 standard quality models

• Software architects, Project managers, Sustainable
ICT experts, Requirement engineers

N. Condori-Fernandez, P. Lago / The Journal of Systems and Software 137 (2018) 289–305 291

Fig. 1. Software Sustainability Survey design and conduction process.

Fig. 2. Product quality model in ISO/IEC 25010.

N. Condori-Fernandez, P. Lago / The Journal of Systems and Software 137 (2018) 289–305 303
Table A.11
Items of the sustainability survey.

ISO/IEC 25010:2011 Quality model
Qualities

Technical Economic Social Environmental

Compatibility
Co-existence x x x x
Interoperability x x x x
Functional suitability
Functional appropriateness x x x
Functional corrected x x x
Functional completeness x x x
Maintainability
Analysability x x
Modifiability x x x
Modularity x x
Reusability x x x
Testability x x
Performance efficiency
Capacity x x x
Resource utilization x x x
Time behaviour x x x
Portability
Adaptability x x
Installability x x
Replaceability x x
Reliability
Availability x x x
Fault tolerance x x x
Maturity x x x
Recoverability x x x
Security
Accountability x
Authenticity x
Confidentiality x
Integrity x
Non-repudiation x
Usability
Accessibility x x
Appropriateness recognizability x x
Learnability x
Operability x
User error protection x
User interface aesthetics x
Context coverage
Context completeness x x x

P
ro

d
u
ct

qu
al

it
y

m
od

el

Flexibility x x x
Effectiveness x x x x
Efficiency x x x x
Freedom from risk
Economic risk mitigation x
Environmental risk mitigation x x
Health and safety risk mitigation x
Satisfaction
Comfort x x x
Pleasure x x x
Trust x x xQ

u
al

it
y

in
u
se

m
od

el

Usefulness x x x

Appendix B. Stability analysis
The following tables report our stability analysis carried out by

comparing the contribution levels obtained from the first and sec-
ond rounds against the third round. These contribution levels are
expressed in a 4-points scale: 1 (highly contributing), 2 (contribut-
ing), 3 (somewhat contributing) and 4 (not contributing).

Then we scored each QR (last column), by assigning 2 points if
there was no difference between the corresponding contributions
levels; 1 point if the difference was minimal (1); and 0 points if
the difference was greater than 2.

• Qualities identified as good contributors to technical sustainability (Functional
correctness, functional appropriateness, availability, modifiability, interoperability and
recoverability) favor positively the endurability of software systems N. Condori-Fernandez, P. Lago / The Journal of Systems and Software 137 (2018) 289–305 297

Fig. 6. Overall ranks of software sustainability dimensions by software architecture (top), sustainability in ICT (middle) and requirements engineering (bottom) audiences.

and environmental sustainability were considered as less relevant,
whereas technical and economic sustainability were ranked as the
most relevant.

Discussion: The results support the idea that our five audiences
tend to judge each sustainability dimension as important accord-
ing to how familiar they are with the notion of sustainability. For
instance, software architects are more familiar with the notion of
technical debt Kruchten et al. (2012) , which enables to optimize the
cost of software system maintenance and evolution over time (i.e.
in economic and technical sustainability, respectively).
3.3. Analyzing the perceived usefulness of the software sustainability
model (RQ3)

Prior questions deal with the extent to which quality require-
ments may contribute to a sustainability model (i.e. technical and
social dimensions). However, we also need to know more about the
perceived usefulness on the sustainability model. Perceived Useful-
ness was evaluated with respect to the degree of agreement on
how the sustainability model could be used to support the follow-
ing activities:

• Quality requirements prioritization. Decision-makers often face
the challenge of having more requirements than are possible
to implement given different and dynamic constraints, such as
time, cost, and other limited resources Condori-Fernández and
Lago (2015) . Prioritization approaches aim to aid the implemen-
tation of a software system with preferential requirements of
stakeholders Achimugu et al. (2014) . However, prioritization is
a complex multi-criteria decision making process that stake-
holders face in any phase of software development Cheng and
Atlee (2007) . We consider that using a software sustainability
model can be crucial to distinguish the important requirements
from the less important ones that contribute to properly ad-
dress the four sustainability dimensions.

• Design of sustainable software-intensive systems. It is
widely known that quality requirements influence on de-
sign decisions (e.g. Ameller et al., 2012 , Gu et al. (2010) ,
Chitchyan et al. (2016)). As an effective software design
should ensure that all the quality requirements of a system
of interest are supported Gu et al. (2010) , we argue that a
software sustainability model can aid designing sustainable
software-intensive systems.

294 N. Condori-Fernandez, P. Lago / The Journal of Systems and Software 137 (2018) 289–305
Table 8
Economic sustainability.

Characteristics Quality High Medium Sum
attributes

A38 Maintainability Reusability 11/16 2/16 13/16
A39 Performance Resource 11/16 4/16 15/16

efficiency utilization
A31 Efficiency Efficiency 9/16 6/16 15/16
A22 Maintainability Modifiability 8/16 4/16 12/16
A16 Compatibility Co-existence 8/16 7/16 15/16
A19 Reliability Availability 7/16 4/16 11/16

A11
Freedom from
risk

Environmental
risk mitigation

6/16 6/16 12/16

A26 Performance Time 6/16 6/16 12/16
efficiency behaviour

clustered and colored based on the degree of contribution. Inclu-
sion in the tables has been determined as follows:
• Quality requirements with a ‘High’ frequency value assigned by

≥ 60 % of the respondents are classified as highly contributing .
This group of requirements is colored in green.

• Quality requirements with a ‘High’ frequency value assigned by
< 60% and ≥ 40 % of the respondents are classified as contribut-
ing . This group of requirements is colored in blue.

• Quality requirements with a ‘High’ frequency assigned by < 40%
of the respondents, but a ‘High’ and ‘Medium’ frequency values
assigned by ≥ 80% of the respondents as somehow contributing .
This group of requirements is colored in red.

• Quality requirements whose frequency values do not fulfill any
of the above criteria are not includes in the tables. However,
the interested reader can find the related details in the study
dataset 5 .
In particular, regarding the social sustainability dimension

(Table 5), most of the security requirements (i.e. confidentiality
and authenticity), health risk and safety risk mitigation, and sat-
isfaction (in terms of trust) were rated as high contributors. Sat-
isfaction (in terms of usefulness) was considered also as a rele-
vant contributor to social sustainability (48 out of 51 respondents),
followed by accessibility (47 out of 50 respondents) and security
(in terms of integrity and accountability - 46 out of 50 respon-
dents). Surprisingly, although most of the usability requirements
were well ranked within group 2, only 15 respondents considered
the ”appropriateness recognizability” requirement as a high con-
tributor, despite this usability requirement allowing users to rec-
ognize whether a system is appropriate for their needs. Similar re-
sults were obtained for learnability, where half of the respondents
considered the relevance of both usability requirements but with a
medium contribution. Another requirement that was considered as
the least relevant by the respondents is “co-existence” (meaning
that a product can perform its functions efficiently while sharing
its environment and resources with other products).

Regarding quality requirements that contribute to technical sus-
tainability (Table 6), most of the respondents considered functional
correctness, functional appropriateness, interoperability, and avail-
ability as the best contributors. Modifiability and recoverability
were also very well ranked since most of the respondents con-
sidered both qualities as good contributors (44 out of 46 respon-
dents). As expected, other maintainability requirements like mod-
ularity and testability were also well ranked. However, despite the
fact that maintainability (in terms of testability and modifiability),
adaptability and interoperability requirements can benefit the flex-
ibility of software systems, flexibility itself was only considered as
a good contributor for the economic sustainability. For the tech-

5 https://tinyurl.com/y7uf4z4y .

nical dimension, flexibility was considered as a contributor (with
high or medium ranks) but only by a total of 33 out of 46 respon-
dents (and for this reason did not appear in Table 6).

Overall, all the qualities of Table 6 benefit the longevity of the
software systems, as well as their appropriate evolution/adaptation
in a constantly changing execution environment.

Regarding the economic sustainability dimension (Table 7), in
contrast to the other three dimensions, here we considered only
quality requirements that were ranked (as high) by at least 4 from
5 respondents. We did so due to the low response rate that pro-
vided feedback on this dimension (see Section 4 for further dis-
cussion). Our respondents were 3 senior software architects and
2 project managers (both were with more than 10 years of ex-
perience). Results show that economic risk mitigation, effective-
ness, availability,recoverability, usefulness, and functional appropri-
ateness tend to be the best contributors to this dimension. The
other frequencies are shown just for completeness.

Finally, regarding quality requirements that contribute to en-
vironmental sustainability (Table 8), maintainability (in terms of
reusability) and resource utilization were considered as the best
contributors to this dimension. Although environmental risk miti-
gation and time behavior were also preferred by most of the re-
spondents (12 of out 16 respondents), both qualities belong to the
third group because their responses were distributed equally be-
tween high and medium contribution levels.
3.1.1. Major findings on QR contribution per sustainability dimension
(RQ1.1)

Social sustainability. Our results regarding social sustainabil-
ity confirm clearly the importance of the security requirement (in
terms of confidentiality, authenticity and accountability) to con-
tribute to the social sustainability, by means of providing an ap-
propriate data/information access. However, as this resource access
should be equal and equitable, the security requirement such as
integrity was also considered as a good contributor, by preventing
unauthorized access to, or modification of, data.

About the satisfaction requirement, trust and usefulness were
also considered as good contributors to social sustainability. These
results support previous research into the social technology accep-
tance area Wixom and Todd (2005) , which links the user satis-
faction with their perceived achievement of pragmatic goals (use-
fulness) and confidence on software systems that will behave
as intended (trust). However, in contrast to the security require-
ments discussed previously, trust and usefulness still require more
attention from the software engineering community Assefa and
Frostell (2007) (e.g. to address the lack of objective measurements).

Another quality requirement that was also very well ranked
was usability in terms of user-error protection and operability.
This result is in line with previous works (e.g. Venters et al.,
2014 , Raturi et al. (2014)). However, despite the extensive amount
of work already dedicated to usability (e.g. Panach et al., 2008;
Ormeo et al., 2013; Nayebi et al., 2013), there is no consensus re-
garding its definition Abran et al. (2003) . For instance, Venters con-
siders the usability requirements but in terms of effectiveness, ef-
ficiency, and satisfaction; whereas in our work, usability is more
considered as a property of the software system (i.e. learnabil-
ity, operability, user error protection, and appropriateness recog-
nizability).

Additional quality requirements that are very well related to us-
ability and satisfaction are accessibility and freedom from risk. By
means of accessibility, software system can be used by people with
the widest range of characteristics and capabilities, equality and
equity are positively favored. About freedom from risk, software
systems must also mitigate the potential risk to people in the in-
tended contexts of use. For instance, a software game can be highly
usable, but also have addictive properties that encourage users to

• Some of maintainability requirements
(in terms of reusability and
modifiability) as relevant for
addressing environmental
sustainability

Karita et al.: Software industry awareness on green and
sustainable software engineering: a state-of-the-
practice survey, SBES, 2019
• RQ3: What phases of the software development life cycle

(SDLC) do sustainable practices apply?

• RQ4: What dimensions of sustainability have been
explored in practice (technical, environmental, social and
eco- nomic) of software development?

• RQ5: What models for sustainable software development
have been adopted by the software industry?

• RQ6: What tools have been used to support sustainability
in the software development process?

SBES 2019, September 23–27, 2019, Salvador, Brazil Karita et al.

Table 1: Sustainability Dimensions Analysis

Dimensions Sustainability concern Irrelevant (1) Less important (2) Neutral (3) Important (4) Very important (5)

Technical Longevity 1 12 12

Technical Resilience to uncertainty 11 14

Technical Performance 1 9 15

Technical Software Evolution 1 1 13 10

Technical Reusability 7 18

Technical System Quality 5 20

Social Product Roadmap 1 3 13 8

Social Awareness 1 1 13 10

Social Ethics 3 11 11

Environmental Energy consumption 1 1 5 10 8

Environmental Environmental concern 1 6 13 5

Economic Time to Market 1 3 11 10

Economic Development e!ort 3 12 10

6 DISCUSSION
In this section we discuss the results in the light of collected data,

based on the set of analyzed dimensions.

• Technical dimension
This survey revealed, according to the results of the analysis
of RQ3, that software practitioners have a narrow perception
of sustainability concepts in the software development pro-
cess. This is because most practitioners have targeted their
perceptions about sustainable software speci"cally in the
quality attribute reuse of source code. This skewed view of
sustainability covers only one of the "ve dimensions de"ned
in the literature, the technical dimension and con"rms the
results presented in the study [14].
In terms of the software development process, we could see
that companies could not yet be considered as green compa-
nies or aspiring to be sustainable companies because they do
not use models, processes, methods and tools to support the
development of their software. The professionals, although
they do not have in-depth knowledge in the subject, visualize
the advantages and importance of thinking sustainable in
software development.

• Social dimension
We could observe, from the open questions, that the practi-
tioners’ awareness needs to happen in all spheres of software
development, not only from a technology perspective. Some-
thing has been said about code reuse, maintainability, e#-
ciency, but awareness goes beyond technical bias. The four
dimensions interrelate and need to happen in an integrated
way so that sustainability really happens in all stages of the
software development process, from the customer’s need to
the customer satisfaction. Therefore, all dimensions could
be better disseminated so that greater compliance could be
achieved by companies and especially by people. In this
way, we could attract conscious and sustainable software
companies.

• Environmental dimension

In this dimension, our purpose was to obtain evidence on
how professionals perceive the impacts of software develop-
ment and maintenance on the environment.
With regard to legislation, some Brazilian laws aimed at
sustainability were mentioned in the study. However, what
could be observed is that environmental issues, focused on
the environment, such as waste recycling, water saving, are
still seen as the main factors associated with the term sus-
tainability by these companies.
Despite the low knowledge of the practitioners on the subject,
the participants attributed this as holding high importance.
In the software bias, this dimension is directly related to
energy consumption and environmental interests [15]. Most
professionals reported that their companies do not have
quality requirements related to sustainability. This insight
reinforces the need for the academic community to increas-
ingly join e!ort to make sustainability a software quality
requirement.
Through this study, it was possible to observe that the un-
derstanding about the homogenization of concepts used in
this area is still uncertain. For software to be produced sus-
tainable, software professionals must agree on the inherent
concepts from this domain and its properties, so that they
could have a clear and shared understanding of environ-
mental knowledge and concern. We understand that it is
important for practitioners to understand the central pillars
of sustainability so that they could have a broader under-
standing of their likely e!ects.

• Economic dimension
For professionals, the development of sustainable software
creates an additional e!ort of development and current projects
do not foresee this type of cost to implement sustainable soft-
ware. We also noticed that companies do not promote sus-
tainable development. These could encompass hiring quali-
"ed people with a good understanding of the principles of
software engineering. Thus, there would be more time and

508

So!ware industry awareness on green and sustainable so!ware engineering: a state-of-the-practice survey SBES 2019, September 23–27, 2019, Salvador, Brazil

of knowledge about Sustainability in the software development
process. 52% out of the respondents had low knowledge about the
subject, 44% had no knowledge and that this was the !rst contact
with the subject. 4% had a medium knowledge of the subject.

We then asked respondents to de!ne sustainable software. The
question was open and we applied the coding on the results. We
identi!ed the codes and after discussion between two of the authors,
we group them into the four dimensions of sustainability (techni-
cal, social, environmental and economic). The category system is
illustrated in Figure 2.

Figure 2: Coding RQ1.

In another question, we have listed six concepts about “sustain-
able software” available in the literature of relevant authors in
domain. The respondents did not have access to authors’ name and
could choose only one option. Our objective was to identify with
which of these concepts the respondents would be more familiar.
The results are described next. We provided the description of each
author in boxes and presented the corresponding results.

“An application that produces as little waste as possible during its
development and operation”. [5]

48% of the respondents consider this the most coherent def-
inition.

“Software developed and used in such a way that leaves minimal
negative impact on users, environment, economy and society in
general”. [18]

24% of the respondents consider this the most coherent def-
inition.

"Software whose impacts on the economy, society, human beings and
environment, resulting from the development, deployment and use
of the software is minimal and/or has a positive e!ect on sustainable
development”. [4]

16% of the respondents identi!ed themselves with this ap-
proach.

“Software code being sustainable, agnostic on purpose, or the purpose
of the software is to support sustainability goals, i.e., to improve the
sustainability of humanity on our planet” [8]

4% of the respondents selected this option.

“Software whose purpose is to support sustainability goals, that is,
to improve the sustainability of humanity on our planet.” [4]

4% of the respondents identi!ed with this de!nition.

“Environment friendly software that helps improve the environment”.
[7]

4% of the respondents selected this option.

Next, we asked the respondents whether sustainability should
or should not be considered as a Nonfunctional Requirement (NFR).
58% of the respondents considered that sustainability should be
considered an NFR. However, only 12% of the respondents were
capable to provides reasonable statements supporting their opinion.
Next, we cite the justi!cations of each of the respondents.

One respondent stated that it should be considered as an NFR
‘‘because of the impacts on the environment and consequently peo-
ple’s quality of life” [#2]; another respondent stated this as being
important to “Gain in growth / evolution of the system” [#3]; and
the last stated that “the use would make the software more quality
for the user” [#7].

5.3.2 RQ2: Sustainability importance level.
In analyzing the degree to which respondents consider that com-

panies should give importance to the sustainability issue in the
software development process, we discovered that 52% treat the
issue as “important” and 32% as “very important”. For another 12%,
it is “neutral” and 4% see “no importance” in the subject. By crossing
this data with the question “What respondents understand that sus-
tainability represents for companies?”, we could see from Figure 3
that most respondents – 52% – see sustainability as an opportunity
to gain new business. Nevertheless, 28% of the respondents believe
that the use of sustainability in the software development process
represents costs and expenses for companies. It is worth to mention
that the total amount could exceed 100% as it was a multiple choice
question.

In order to understand if companies have an ecological bias, in
a general scope, with a focus not only on software, we asked the
respondents if the company they worked for adopted any sustain-
ability practice such as: proper disposal and recycling of waste,
batteries, compliance with environmental legislation, saving water,
energy and paper or others. Respondents chose one of the following
answers:

• Expert: Meets all legislations, performs and encourages vari-
ous practices.

• Intermediate: Meets several legislations and performs various
practices.

• Beginner: Meets few legislations and performs some prac-
tices.

• No knowledge

505

So!ware industry awareness on green and sustainable so!ware engineering: a state-of-the-practice survey SBES 2019, September 23–27, 2019, Salvador, Brazil

Figure 5: Main di!culties in adopting sustainable practices
by companies.

In addition to the previous question, we sought to know what
respondents think as mandatory features for a software develop-
ment process to be considered as sustainable. The codes obtained
from this open question were: reuse, code quality, sustainable good
practices (using standards, green models and metrics), agile meth-
ods, resource usage awareness, robust architecture, reduction of
environmental impacts and e!cient coding.

When asked whether the companies they worked for used to
encourage the adoption of sustainable practices in the software de-
velopment process, 40% were unable to answer. 32% of them stated
this was a rather common practice, while other 28% reported that
their companies do not encourage. In addition, we also attempted
to "gure out, from the companies that encourage the use of sus-
tainable practices, which are the covered SDLC phases. As Figure
6 shows, 38% of the companies use to adopt such practices in the
development phase, 29% in the design phase, 24% in requirements
and 10% in testing phase. The respondents were allowed to choose
more than one SDLC phase.

Figure 6: Phases of SDLC

We asked the respondents in which SDLC phases they could
identify any de"ciencies in terms of sustainability practices. 22%
showed no de"ciencies, 20% showed de"ciencies in the development
phase, 16% at the design stage, 14% in the requirements phase and
12% in the testing phase. The identi"ed de"ciencies were:

• General: Poorly de"ned processes [#1], Lack of initiatives
[#15], All phases need practices aimed at sustainable soft-
ware development because it is not a knowledge that the
team has [#25].

• Requirements: Does not translate software needs by imag-
ining future generations [#7], lack of professional quali"ca-
tion regarding the subject in the requirements phase [#11].

• Design: Lack of creation of a framework and availability of
open architecture that allows the addition of new items [#9],
There is a de"ciency because no design pattern is applied to
it [#23] Systems architecture is not thought of in order to
minimize the use of energy of the software [#24].

• Development: Does not develop with reuse of item [#5],
Lack of reuse of code [#8].

5.3.4 RQ4: Sustainability dimensions.
In this survey, we list the contributions proposed by Lago et al.

[14], without to show their related dimension. The idea was to
observe how the respondents perceived the dimensions of sustain-
ability in their daily activities and the importance level of each
was observed. For each feature, respondents were presented a brief
description and "ve unique response options.

Table 1 shows that, on average, 89% of the respondents consid-
ered all characteristics as either “Important” or “Very important”.
The “Very important” degree was attributed to the following char-
acteristics: Adaptation to changes, Reusability and Quality of the
system. The degree “Important” was attributed to the characteris-
tics: Development oriented to features, Software evolution, Product
roadmap, Awareness about the use of sustainable practices, En-
ergy consumption, Environmental interest, Time to Market and
Development e#ort. and Sustainable Ethics tied for grades 4 and 5.

This results show that professionals consider the technical di-
mension as the most important with a mean of 95%, followed by
other dimensions: Social (88%), Economic (86%) and Environmental
(72%).

5.3.5 RQ5: Sustainability models.
In this section it was investigated whether the professionals had

an adequate knowledge about the green and sustainable software
engineering "eld, and if in their companies they applied any process
model to support sustainability in Software Engineering practices.
As a result, 96% of the respondents said that they did not know about
any applied models and 4% of them stated that the company uses
the EPEAT tool6 to compare and select technological peripherals
based on their environmental attributes to make their purchases.

5.3.6 RQ6: Sustainability tools.
In this topic we seek to investigate if the company adopts some

tool, technique or method to measure sustainability and also if there
is the adoption of some sustainable design pattern in the software
development process. 36% of the respondents stated they did not
know about any, or did not know how to report on their use in their
companies. Only one of the respondents stated that they consider
energy e!ciency when developing software. The respondent said:
“E!cient coding is in mind to minimize code and hardware resource
lines (memory, disk and processing). The veri"cation of good practices
and adherence to items aimed at e!cient coding, software and metric
software (SONAR), CI / CD (JENKINS) and others that you would not
know need due to the size of the company”.

6https://www.epeat.net/

507

Becker at al.: Requirements: The key to
sustainability, IEEE Software, 2016
• Sustainability has often been equated with environmental issues, but it

requires simultaneous consideration of environmental resources, societal
and individual well-being, economic prosperity, and the long-term viability
of technical infrastructure
• trade-offs occur across other dimensions

• A software system’s impact on its environment is often determined by how
the software engineers understand its requirements
• sustainability debt: decisions made for the present situation have invisible effects

that accumulate over time in each of the five dimensions
• A series of decision points occurs during system design. Many of them are

requirements-engineering activities that occur repeatedly in all iterations
throughout the projects

62 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: THE FUTURE OF SOFTWARE ENGINEERING

systems-oriented, stakeholder- focused
approach, supported by higher
management and executives. Their
task is to understand the nature of
software-intensive systems and the
impact those can have on their social,

technical, economic, and natural en-
vironments and the individuals in
those environments.

This responsibility is re!ected
in the new UK Standard for Profes-
sional Engineering Competence,

which speci"es that engineers are
to “act in accordance with the prin-
ciples of sustainability, and prevent
avoidable adverse impact on the en-
vironment and society.”11 It’s up to
SE curricula developers to equip

TA
B

L
E

 1 Table 1. Software engineering practices for sustainability.*

Task Standard current practice Focus of future practice

Mind-setting The world is a puzzle, and we should solve
the problem.

The world is complex, and we should !rst understand the
dilemmas.

Determination of the
project objective and
the system purpose,
boundary, and scope

Focus on the immediate business need and
key system features. Don’t question the
project’s or system’s purpose.

Emphasize how the project can affect sustainability in all
dimensions. Strive to advance sustainability in multiple
dimensions simultaneously. Experiment with different system
boundaries to understand the alternative impacts.

External constraint
identi!cation

See constraints as imposed by the direct
environment of the system and its technical
interfaces. Minimize the constraints
considered, but include legal, safety,
security, technical, and business resources.

See constraints in each dimension as opportunities. Look for
constraints from additional sources, starting with company
corporate-social-responsibility policies, legislation, and
sustainability standards.

Stakeholder
identi!cation

Minimize the number of stakeholders
involved, and focus on those who have
in"uence. Focus on internal stakeholders,
and exclude unreachable stakeholders.

Maximize stakeholder involvement in an inclusive perspective
integrating external stakeholders, and involve those who
are affected. Assign a dedicated role to be responsible for
sustainability, and introduce surrogate stakeholders to represent
outside interests.

Success criteria
de!nition

Focus on the !nancial bottom line at project
completion. Measure the business outcome
and !nancial return on investment.

Focus on advancing multiple dimensions simultaneously,
including !nancial aspects, and take into account that most
effects occur after project completion.

Requirements
elicitation

Focus on the features and immediate effects
the stakeholders want.

Help the stakeholders understand the system’s enabling effects.
Use creativity techniques and long-term scenarios to forecast
the potential structural impact.

Risk identi!cation Identify risks that threaten timely project
completion within the budget.

Include the effects on the system’s wider environment. Include
enabling and structural effects and risks that can develop over
time.

Tradeoff analysis View tradeoff analysis as a prioritization
and selection problem, and let the key
stakeholders decide.

Strive to transform sustainability tradeoffs into mutually
bene!cial situations. Ensure that a wider range of stakeholders
(or their surrogates) discuss sustainability tradeoffs.

Go/no-go decision Base the decision on feasibility, !nancial
costs and bene!ts, and risk exposure
to project participants—that is, internal
stakeholders.

This continues to be an internal business decision but is
documented to show to external audiences that it took into
account sustainability indicators and enabling effects. The
decision is based on a consideration of positive and negative
effects in all !ve dimensions.

Requirements
validation

Let key stakeholders verify that their
interests are captured.

Ensure broad community involvement focused on understanding
effects.

Project completion Verify whether success criteria are met on
the completion date. After that, focus on
maintenance and evolution.

Evaluate the effects in all !ve dimensions over a certain time
frame after completion, aligned with the expected timescale of
effects.

Requirements
documentation

Current templates ignore long-term effects
and sustainability considerations.

Templates require information about sustainability as a design
concern and support analysts with checklists.

* For a description of the dimensions mentioned in the table, see the section “Sustainability in Software Engineering.”

Authorized licensed use limited to: Lappeenrannan Teknillinen Korkeakoulu. Downloaded on March 30,2020 at 08:13:28 UTC from IEEE Xplore. Restrictions apply.

Penzenstadler et al.: Everything is
INTERRELATED:Teaching Software Engineering for
Sustainability, SEET/ICSE, 2018
• Keeping the sustainability in the process from the beginning
• From problem domain to solution domain

• Getting all relevant stakeholders involved
• Having clear sustainability objectives

3.3 Criteria for the analysis of the artefacts

Over the course of the week, the objective was to develop a specification ac-
cording to a small requirements artifact model as well as some prototypes or
mock-ups. An overview of the artifact model to be produced is given in Fig. 2.
The artifacts are a rich picture, a stakeholder model, a goal model, a use case
overview model, design thinking prototypes, and a sustainability analysis di-
agram. For the artifact analysis, we used a list of jointly elaborated quality
criteria to structure their analysis (Table 4). For each artifact, there is a num-
ber of questions and criteria to be considered by the evaluators.

Figure 2: RE4S artefact model used in the course

Table 4: Criteria for the analysis of the artefacts

Overall

• Does the project address the chosen sustainability challenge well?

Stakeholder model

• Have all major stakeholder groups been considered?

• Is the diagram easy to understand?

• Are there well-organized hierarchies?

• Are the relationships between the stakeholders clear?

• Have stakeholders been analyzed and described (to an adequate degree of
detail)?

10

Venters at al.: Characterising Sustainability
Requirements, SEIS/ICSE, 2017

• Term ‘sustainability requirement’ in software and requirements
engineering
• constructed in a way that suggests it is different in the way from how we

understand requirements in general
Area Key concepts Motivation Main actors Sustainability requirement context
IS Cost effectiveness

Process improvement
Process structuring

Improve cost effective-
ness of process, aiming
for cost reduction.

Business, Regulators,
Customers

Metrics and controls context, “such as
operating and capital cost, safety, en-
ergy cons., waste gen., efficiency”

ICT Optimisation of IT
infrastructure, Green
computing, Environmental
sustainability, Sustainability
of IT services, Longevity of
energy systems

Improved resource and
energy efficiency of
ICT

Customers, employees,
business partners,
NGOs

Environmental sustainability related to
energy consumption and performance

SW
Eng

Software development process
models

Environmental impacts
of ICT

Software developers,
administrators, users

Implicit non-functional qualities

Sys
Eng

Optimize systems considering
sustainability issues

Economic expectations
and environmental con-
sciousness

All stakeholders
in context, noting
they have varying
background

Sustainability requirements have to be
communicated

Ergo-
nomics

Multi-dimensional understand-
ing with economic, social, and
environmental

Economic and
business-strategic
aspects, human factors

Wide range of stake-
holders, including all
designers

Environmental context and long life cy-
cles

RE Multi-dimensionality of sus-
tainability, Interdependence of
dimensions, Trade-offs, Gen-
eral models of sustainability

Make sustainability
more tangible, Make
related goals explicit,
Assess sustainability

Decision making
households and/or
software professionals,
regulators

Multiple dimensions and trade-offs:
‘Achieve acceptable level of service
(...), have min. impact on natural env.,
be socially and economically accept-
able’

Table VIII: Coverage of sustainability aspects in influential papers of key areas

Sys Eng SW Eng Req Eng
1 Orientation Aware Improving
2 Indicators Concerned index
3 safety Considering Incorporating
4 requirement Concept integrating
5 connectivity Dimensions advocate
6 social Debt dimension
7 requirements environmental dimensions
8 performance individual chair
9 environmental Define systematically

10 network Metaphor social
MI (8.4,5.1) (5.6,4.9) (5.6,5.2)

Table IX: Top collocates across selected research areas

ability. Büyüközkan et al. [43] argue that sustainability is
“using resources to meet the needs of the present without
compromising the ability of future generations to meet their
own”. Brent et al. [44] refer to the Brundtland definition [8]
and highlight that the concept of sustainability and sustainable
development can be understood intuitively, but it remains
difficult to express it in concrete, operational terms. However,
both Brent et al. [44] and Büyüközkan et al. [43] agree that
sustainable development is about achieving environmental,
economic, and social welfare for present as well as future
generations.

Both share the view that stakeholders have to communicate
sustainability requirements. In [43], the customer require-
ments represent the sustainability requirements of a supply
chain. However, neither provides a formal definition of the
term sustainability requirement.

Büyüközkan et al. [43] argue that key actors are all
stakeholders in companies benefiting from efficient supply
change management. Brent et al. [44] argue that the variety
in backgrounds of stakeholders such as health care personnel
and patients needs to be adequately considered in requirements

elicitation activities.
b) Software Engineering: Both Naumann et al. [45] and

Mahmoud and Ahmad [46] are motivated by the concern
that ICT has a negative impact on the environment due to
its increasing resource and power consumption, and aim to
improve resource or energy efficiency of ICT. For example,
Naumann et. al. [45] argue that it is not clear whether the
resource and energy savings through ICT overbalance the
resource and energy consumption by ICT.

The key concepts in both these papers are software develop-
ment process models with a strong emphasis on Green Com-
puting and Environmental Sustainability as well as sustain-
ability assessment metrics. While both papers acknowledge
that the impacts of ICT on sustainable development should
also include human and social sustainability, their focus is
environmental. Neither defines sustainability directly. Instead,
both cite a definition of sustainable software as ‘software
that meets its (realistic) sustainability objectives, expressed
in terms of direct and indirect impacts on economy, society,
human beings, and environment that result from its definition
and deployment’ [56].

Similarly, the term sustainability requirement is not for-
mally defined, though implicitly these requirements are consid-
ered to be non-functional qualities. In [46], these are specific
to environmental concerns, while in [45] they relate to other
identified dimensions as well.

The key actors here are software developers, administrators,
and software users. Mahmoud and Ahmad [46] argue that in
addition to supporting all the all stakeholders from developers
to users in creating, maintaining, and using software in a
’more environmentally sustainable’ way, the role of software
itself in maintaining and optimizing energy usage in ICTs
must be considered. However, Naumann et. al. [45] argue

99

Seyff et al.: Tailoring Requirements Negotiation to
Sustainability, RE, 2018

• Existing RE methods and tools do not explicitly facilitate the
discussion and negotiation of sustainability-related concerns
• leads to insufficient or one-dimensional perceptions of sustainability

• Adapted EasyWinWin approach

quirements negotiation workshop with one of their clients in
Austria. This workshop was held at the client’s site involving
the two consultants from InsideAx, the CEO of the client com-
pany, and two of the academic authors of this paper.

A.!Pilot Workshop
A 2-hour pilot workshop was held the day before the actual

customer workshop. After an introduction of the five sustaina-
bility dimensions and orders of effects (approx. 15 min.), we
discussed the EasyWinWin method, where we focused on the
modified Steps 7 and 8 and introduced the Excel template (ap-
prox. 20 min.). One of the academic researchers did these first
steps. Then we started with the actual requirements elicitation
and negotiation. However, the focus was on the actual negotia-
tion, and the other EasyWinWin steps were briefly walked
through. This was also possible because InsideAx had already
prepared a list of requirements (Win Conditions) for a more in-
depth discussion regarding sustainability. In this pilot work-
shop, one of the consultants already acted as moderator (and as
the business analyst), and the other one played the role of an
ERP customer (and the technical expert). The two participating
academic researchers observed the workshop and served as
scribes; they also had the opportunity to get involved in the
discussion to clarify open issues regarding the approach, the
sustainability dimensions, and the orders of effects. The aca-
demic researchers made minor adaptations of the Excel tem-
plate created for documenting the process outcomes based on
the lessons learned during the pilot. Finally, the workshop
ended with a wrap-up session (approx. 15 min.) where the
results of the pilot were discussed.

B.!Requirements Negotiation Workshop with an ERP
Customer
The actual elicitation and negotiation workshop was held at

the customer site and took 4,5 hours (including a tour through
the facilities). In addition to a customer representative (the

CEO), the two consultants from InsideAx and the two academ-
ic researchers, who had participated in the pilot workshop, also
participated in this on-site workshop. While the first consultant
again acted as moderator, the second consultant had the role of
a technical expert answering technical and ERP system related
questions. One of the academic researchers served as scribe for
the workshop, while the other observed the workshop from the
method and research perspective, and also documented out-
comes in this regard. However, the academic researchers were
also allowed to contribute to the discussion. During the work-
shop, the template and documentation of the scribe were visible
to all participants. Again, the workshop ended with a short
wrap-up session (approx. 10 min.) where all participants were
asked to communicate their impression of the workshop. The
workshop was audio recorded and later transcribed for analysis.
Before the workshop, we conducted a stakeholder analysis to
identify success-critical stakeholders and also reviewed and
discussed negotiation topics (Step 1).

The stakeholder analysis was performed by the two ERP
consultants and the academic researchers, It was strongly based
on the stakeholder analysis done by InsideAx for previous
workshops with this client and done in an informal way with
the help of brainstorming. The analysis revealed two success-
critical stakeholders: (1) a domain and process expert who
knows about requirements for the evolution of the ERP system
and (2) a technical expert who knows the capabilities and con-
straints of the ERP system in use. Furthermore, the involve-
ment of employees performing the process and other stake-
holders from the supply chain were also considered. However,
due to the limited time and resource available for the work-
shop, it was agreed to focus on the company’s CEO, who is a
domain and process expert, and the one consultant from In-
sideAx who is a technical expert.

For reviewing and expanding the negotiation topics, the
ERP consultants and the customer agreed to an upfront discus-

TABLE I. A NEGOTIATION EXAMPLE INVENTED DURING METHOD CREATION

���

Seyff et al.: Crowd-Focused Semi-Automated
Requirements Engineering for Evolution Towards
Sustainability, RE, 2018

• No established means to analyse the impact of a given requirement on
sustainability
• Concept of sustainability requirements

• non-functional requirement or software quality aligned with one or more of the sustainability
dimensions

• Expect that requirements positively affecting sustainability ideally have an overall
long- term positive effect on one or more sustainability dimensions

pened before Daniel sent his request. The results are provided
to him and other crowd members as summaries and visualisa-
tions via the integrated feedback mechanism. This helps Dan-
iel understand that his requested feature will not be imple-
mented due to its various negative effects on sustainability.
Daniel is also informed that alternatives are being sought and
he is invited to participate in finding and discussing these al-
ternatives. He is happy that SustainTech immediately reacts to
his feedback, communicates that they are still interested in his
opinion, and informs him of the potential effects of such a
service.

Over dinner, Daniel shares his experience with his friends:
“It is remarkable! Of course, I thought that a service carrying
one passenger would not be so environmentally friendly.
However, I had not realised the effects it could have on our
society and that it could even make my journey longer! I will
watch out for the possible effects of the products and services
I choose to consume in the future! What about you?”.

IV. CONCEPTUAL SOLUTION AND ONGOING WORK
In the motivating scenario, we have illustrated how a

crowd-focused semi-automated approach that supports soft-
ware evolution towards sustainability could be realised. As
outlined in the scenario, this envisioned approach is based on
the following three key ideas: (1) to enable affected stakehold-
ers (the crowd) to give feedback on a system and to negotiate
this feedback including the discussion on sustainability with
software companies, (2) to semi-automatically analyse stake-
holder needs with respect to sustainability, (3) to support deci-
sion making and software evolution based on the results of the
sustainability analysis.

Our envisioned approach will be realised with the help of a
platform that includes three key components that work togeth-
er to support the continuous negotiation of stakeholder needs
(see Fig. 1): (1) CrowdFeed allows users to communicate
feedback regarding the software products and services they
use and to actively participate in the negotiation, (2) Require-
ments and Sustainability Service (ReSuS) classifies, clusters,
and analyses the feedback received from the CrowdFeed com-
ponent, (3) Requirements and Sustainability Integrator (ReS-
Integrator) supports the visualization and assessment of ef-
fects on sustainability.

The following subsections describe the three key ideas and
components in more detail, outlining existing and ongoing
work.

A. CrowdFeed
Link to scenario. Daniel and other stakeholders can com-

municate ideas, problems, and experiences on the public
transport app through built-in multi-modal feedback mecha-
nisms or social networks. This feedback can be about sustaina-
bility but is not limited to such issues, and stakeholders can
communicate feedback such as usability or performance issues.
The crowd is actively involved in the prioritisation of a re-
quirement and the discussion about its sustainability impact,
ultimately supporting Linda and her team in the requirement
prioritisation and sustainability impact assessment.

State-of-the-art. Research on various feedback communi-
cation channels has emerged, including app stores [11] and
social networks [12], but also dedicated feedback tools, de-
signed as standalone [13], embedded [14], or cross-platform
[15] solutions. The crowd can express their feedback in linguis-
tic (e.g., free text, audio recording, category selection) or non-
linguistic (e.g., rating, annotated screenshots) formats [16].
Moreover, the feedback communication can be initiated by a
feedback sender like Daniel who sends (pushes) a short mes-
sage or by a feedback receiver like Linda who asks (pulls) in
the negotiation phase for feedback [17]. However, users may
lack motivation [18], and feedback acquisition approaches
might not consider users’ preferences [19]. This can hinder a
continuous involvement of the crowd. To the best of our
knowledge, none of the existing (crowd-focused) feedback or
negotiation solutions involves, supports and encourages the
crowd in the elicitation and discussion of sustainability effects.
The lack of such solutions hinders research investigating the
crowd’s interest in sustainability effects of requirements.

Link to conceptual solution. We will develop new, and
modify and extend existing feedback communication channels
that will enable and motivate affected stakeholders (the crowd)
to give feedback to a product or service. The envisioned
CrowdFeed component also allows stakeholders to participate
in negotiation and to get informed about discussion and analy-
sis results.

Detailed description. The CrowdFeed component includes
push and pull feedback plug-ins that are integrated into the
software system, but also mechanisms to monitor social net-
works. This will allow the involvement of affected stakehold-
ers, including end-users, software engineers, and in general,
any person or organisation who has an interest in the system or
its sustainability effects. Moreover, CrowdFeed enables a feed-
back receiver like Linda to ask questions for clarification to a
feedback sender like Daniel. CrowdFeed can also inform Dan-
iel about the status of his feedback. In addition, Linda can acti-
vate a personalised rewarding system for CrowdFeed users to
keep them motivated in the elicitation and negotiation. Overall,
the CrowdFeed component can be configured to the feedback
sender’s and the feedback receiver’s needs and preferences.

Ongoing work. In our ongoing work, we are investigating
users’ needs (e.g., privacy), preferences (e.g., feedback for-
mats), and motives (e.g., social recognition, altruism, power)

Fig. 1. Conceptual solution idea with the three key components.

���

• Can also be used to support the elicitation,
analysis, and negotiation of user concerns
regarding other issues (e.g., usability,
accessibility, or performance)

Venters et al.: Software sustainability: Research and
practice from a software architecture viewpoint, JSS,
2018
• Software systems are sustainable if they can be cost-efficiently maintained and evolved over their entire life-

cycle, which is arguably determined by the software architecture
• mechanism for reasoning about key software qualities (e.g. maintainability, extendability, scalability, security,

performance, reliability, portability etc.)182 C.C. Venters et al. / The Journal of Systems and Software 138 (2018) 174–188
Table 1
Overview of software metrics that can be used to estimate architecture sustainability.

Architecture level metrics
Smells Metrics Quality attributes

Maintenance Smells about ambiguous and unused interfaces,
when functionality of modules are rather small
or big and those smells concerning delegation of
functionality

Module interaction index, Attribute hiding factor,
API function usage index, Module Size Uniformity
Index, Module Size Boundedness Index

Complexity, Modularity
(Mitchell, 2006), Analyzability,
Effectiveness, Understandability

Smells that effect to duplicate functionality and
coupling between components Clone detection, Coupling between object, Ratio of

cohesive interaction, Modularization Quality Reusability, Complexity,
Modifiability, Modularity

Smells where multiple components realise the
same concern or a component implements an
excessive number of concerns. Therefore, we can
identify components with a suitable percentage
of methods

Concern diffusion over architectural components,
Component-level interlacing between concerns,
Number of concerns per component, Well-sized
Methods Index

Reusability, Modifiability,
Understandability, Modularity

We identify components with an excessive number
of dependencies, cyclic dependencies and
dependencies that crosscut layers

Cyclic dependency index, API function usage index,
Layer Organization Index, Cumulative component
dependency, Excessive structural complexity

Modularity, Understandability,
Changeability Modifiability

Other cross-cutting smells affecting any part of the
architecture Architectural smell coverage

Architectural smell density Cost
Evolution Elements that change too often, Number of

elements impacted by a change Instability, Ripple effect, Distance from Main
Sequence, Module Interaction Stability Index Stability, Evolvability

Likelihood of components that evolve together Bi-directional coupling component Complexity, Evolvability
Architecture knowledge level metrics

Maintenance Excessive number of decisions and trace links NodeCount, EdgeCount Complexity, Stability
Too many AK ítems and decision alternatives Cost of AK capturing effort Cost

Evolution A change impact on many decisions Ripple effect, instability, change proneness Changeability, Stability
Obsolete decisions and frequent changes Decision volatility Timeliness

the estimation effort for capturing AK items, such as the results
of the study described in Section 4 (Carrillo, 2017), as another
form to compute how much AK should be captured to make the
set of design decisions sustainable during maintenance and evo-
lution cycles. Finally, metrics to compute the impact of changes
in the design decisions are based on ripple effect, instability and
change-proneness metrics (Ampatzoglou et al., 2015). For example,
Ampatzoglou et al. (2015) use instability and change-proneness
metrics to estimate the stability of design patterns (i.e. stability in
this context is defined as the resistance of a software system to
the ripple effect), where the resistance of classes to changes helps
to determine the stability of the classes participating in a change.
These early attempts at the estimation of the sustainability of AK
highlight that this is an open and fruitful area of research.

Aggregated metric sets: A combination of metrics often has a
more significant impact to provide more accurate quality indica-
tors when we estimate the sustainability of the system’s architec-
ture. For instance, in a renewed study, Koziolek et al. (2015) cat-
egorise software metrics ranging from modularisation to volatil-
ity with their potential to impact on estimating architecture sus-
tainability. Similarly, Le et al. (2016) suggest other combinations of
metrics and introduce three new metrics (i.e., BDCC: Bi-Directional
Component Coupling, ASD: Architectural Smell Density, ASC: Ar-
chitectural Smell Coverage) to understand technical sustainability
and estimate when architecture start to erode or decay. They state
in order to relate architectural qualities and smells, the combina-
tion of Concern Diffusion over Architectural Components (CDAC)
with Component-level Interlacing Between Concerns (CIBC) met-
rics is suitable to estimate the scattered parasitic functionality as a
concern-based issue for maintenance, which has a definite impact
on modifiability and reusability. However, one of the challenges is
to find out which combination of metrics provides more meaning-
ful indicators, as some tools only offer coarse-grained indicators
about technical debt and other quality properties.

As an overview of metrics that could be potentially be used
to estimate and understand the sustainability of systems at differ-
ent levels of abstraction, we summarise a representative number of
these metrics that can be combined or used in isolation to relate
the qualities desired with the smells in Table 1 . This classification

is based on previous work (Koziolek, 2011; Koziolek et al., 2013;
Le, 2016; Capilla et al., 2017), which summarises the seminal work
on architecture level metrics. The information in Table 1 can serve
as a guide on which metrics to combine in order to evaluate a par-
ticular quality attribute that may help to estimate technical sus-
tainability. However, we do not provide specific relationships indi-
cating which concrete metrics measure each particular quality at-
tribute. It should be noted that conflicts between different metrics
are not discussed in this table.
6. Sustainability in academic research and practice

In addition to the increasing dependency of modern society on
software in general, it also now plays a critical role in the advance-
ment of knowledge, with the paradigm shift in research towards
large-scale, data-intensive computational science and engineering
(Hey et al., 2009). Software’s increasing importance in the field
of research has led for calls for it to be classified as a first-class,
scientific instrument (Goble, 2014; Allen et al., 2017; Crick et al.,
2017). While Hettrick et al. (2014) demonstrated the importance of
software in research – 59% of respondents claimed that software
was fundamental to their research – the study highlighted that 56%
of researchers developed code with 21% of them having no training
in software development. As a result, this raises serious questions
regarding the overall quality of the software per se, the potential
implications on the reliability and validity of the research output,
as well as the sustainability of essential codebases critical to the
research communities.

The use of metrics to estimate software architectural sustain-
ability serves to highlight the presence of a range of underlying
issues. The correct use and interpretation of these metrics - and
subsequent identification and resolution of the causes of sustain-
ability problems - requires appropriate knowledge and expertise in
developing useful and usable software artefacts. Progress in sci-
entific research is dependent on the quality and accessibility of
software at all levels, and it is now critical to address the variety
of challenges related to the development, deployment, and main-
tenance of reusable software. Despite significant and continuing
effort s across academia, from undergraduate students through to

• Software sustainability, Software
architecture sustainability,
Sustainable software architecture
decisions
• Architecture drift, erosion,

Sustainability debt
• loss of quality of a system must be

estimated using appropriate
indicators and metrics that can smell
that the quality is decreasing during
evolution cycles

• key issue in assessing the value of
software metrics is whether they
support decision- making.

Blevis: Sustainable Interaction Design:
Invention & Disposal, Renewal & Reuse,
CHI, 2007
• Focus is primarily on environmental sustainability

and the link between interactive technologies
and the use of resources
• Software and hardware are intimately connected

to a cycle of mutual obsolescence
• If we agree that fundamental change is needed

and it might be the change that users don’t want,
who gets to decide what change should happen
and how?
• Linking invention & disposal, promoting renewal

& reuse, promoting quality & equality, de-
coupling ownership & identity, using natural
models & reflection

and Allenby [17] is set in contemporary terms—that is from a
global perspective

I = N x P x E
where the total impact, I, of energy consumption, material
resource use, and waste production is defined as a product of
the population size N, the Gross Domestic Product (GDP)
per capita P, and the specific impact as a measure of eco-
efficiency which may be understood as energy use per GDP
per capita E.
Based on figures from the International Energy Association
(IEA) and the Union of Concerned Scientists (UCS), Kumar
et al. [21] make predictions that the earth’s population N will
increase by a factor of 2 to 10 billion by the year 2050, and
that GDP per capita P will increase by a factor of 5,
conservatively stated. Thus, in order only to do no more harm
than we are already doing to the environment, we need to
reduce energy use per capita E by a factor of 10. Kumar et al.
[21] further point out that the improvement in efficiency in
the use of energy over the last 100 years has only been a
factor of 2.5, that faith in technology as usual cannot succeed,
and that new thinking is critical to our survival.
For the scientific community, these predictions are not at all
controversial. Thus, sustainability must be counted among
the distinguished and primary design values in any context.
At the very least, the goal of SID is to provide frameworks
and discourse that enable interaction designers to reflect on
sustainability as a design value and situate and balance
notions of sustainability with respect to other design values.

Methods
From the perspective of design methods, one way to think
about SID is as the notion that methods for interaction design
need to integrate concern for potential effects on the
environment, and for the sustainability of the behaviors
induced by designed interactions. Sustainability need not be
restricted only to the centrality of environmentalist
concerns—for example, an hypothesis about the effects of
interactive computer games on the prevalence of obesity (see
[44], for example) is within the scope of SID and the
prevalence of obesity is an example of an unsustainable
behavior. A goal of SID is to suggest ways in which
sustainability concerns can be integrated into existing design
methods or new design methods in a manner that yields
sustainable interaction design as a practice.
Methods expressed as belief in prescriptions for design
processes are at the core of the research in HCI and software
engineering. Löwgren & Stolterman [23]:c4 describe an
inventory of such methods with an eye towards the
limitations. The complexity of relationships between digital
artifice and sustainability effects make the notion of methods
as usual problematic for the cause of SID. Design methods
for dealing with the complexity of SID would do well to
include those common in other design disciplines, such as
design critiques, design case studies, and reflective practices

(see Cross [7], Fallman [9], and Schön [38]), at least in
addition to general models of process as enumerated in HCI
texts such as Preece, Rogers, & Sharp [36].

Reasoning
From the perspective of design reasoning, one way to think
about SID is as the notion that representations and
interpretations of interaction design should as well denote
and account for the effects of a design on the environment
and sustainable behaviors. I would begin such a discourse by
proposing the following rubric for understanding and
assessing particular interaction design cases in terms of forms
of use, reuse, and disposal from the perspective of
sustainability, ordered very approximately from greatest to
least negative environmental impact:
1. disposal—does the design cause the disposal of physical

material, directly or indirectly and even if the primary
material of the design is digital material?

2. salvage—does the design enable the recovery of
previously discarded physical material, directly or
indirectly and even if the primary material of the design
is digital material?

3. recycling—does the design make use of recycled
physical materials or provide for the future recycling of
physical materials, directly or indirectly and even if the
primary material of the design is digital material?

4. remanufacturing for reuse—does the design provide
for the renewal of physical material for reuse or updated
use, directly or indirectly and even if the primary
material of the design is digital material?

5. reuse as is—does the design provide for transfer of
ownership, directly or indirectly and even if the primary
material of the design is digital material?

6. achieving longevity of use—does the design allow for
long term use of physical materials by a single owner
without transfer of ownership, directly or indirectly and
even if the primary material of the design is digital
material?

7. sharing for maximal use—does the design allow for
use of physical materials by many people as a construct
of dynamic ownership, directly or indirectly and even if
the primary material of the design is digital material?

8. achieving heirloom status—does the design create
artifice of long-lived appeal that motivates preservation
such that transfer of ownership preserves quality of
experience, directly or indirectly and even if the primary
material of the design is digital material? This notion of
heirloom status is similar to Nelson & Stolterman’s [30]
description of “ensoulment”.

9. finding wholesome alternatives to use—does the
design eliminate the need for the use of physical
resources, while still preserving or even ameliorating
qualities of life in a manner that is sensitive to and
scaffolds human motivations and desires?

CHI 2007 Proceedings • Design Theory April 28-May 3, 2007 • San Jose, CA, USA

506

10. active repair of misuse—is the design specifically
targeted at repairing the harmful effects of unsustainable
use, substituting sustainable use in its place?

The rubric above provides a mechanism for informal,
heuristic reasoning about the sustainability outcomes of
physical materials induced by interaction designs. Notions of
“Multi-Use” and “Zero Waste” as described in Kumar et al.
[21] map onto all but the first item of the rubric. More formal
reasoning is also possible. As described in Kurk &
McNamara [22]:22, the consulting firm PRe Consultants has
devised a metric called ECO indicator 99 for the Dutch
government which may be understood as a notion for
formalizing reasoning about the environmental effects of a
design, in general. While such metrics may seem overly
reductive in some contexts, we might easily imagine an ECO
index specifically for interaction design. I will suggest
methods which appeal to such formalism in future work.
In [2], a paper which follows from this one, I give examples
for each of the elements of the rubric, as well as distinguish
between the use of the rubric from the perspective of “design
criticism—what is needed to understand and interpret
present ways of being”—as a complement to the perspective
of “critical design—what is needed to ensure that our
actions lead to sustainable future ways of being.”

Open Research Questions
There are a number of research questions concerning SID
that are appropriate. It is not possible to be exhaustive here.
Also, some of these question imply the possibility for more
formal techniques than some others. I divide the questions
into two categories.
The first category includes questions concerning public
policy, simulation & prediction, such as: (a) How can the
effects of information technologies on unsustainable
behaviors be measured? (b) How can the effects of harmful
use of information technologies be predicted, or simulated?
(c) What can be learned about SID apropos of sustainable
behaviors from past experience? (d) What can be learned
about SID apropos of sustainable behaviors from other
societies? (e) How much damage both environmental and
otherwise has already occurred? (f) Who is responsible for
ensuring that design with the materials of technologies is
directed towards sustainability?
The second category includes questions concerning
motivating sustainable behaviors by means of sustainable
interaction design, such as: (a) How can digital artifice be
designed such that people will prefer sustainable behaviors to
unsustainable ones? (b) How can the effects of invention be
connected to the effects of disposal in the view of interaction
designers and in the public view? (c) How can renewal &
reuse of digital artifice be made to be more attractive than
invention & disposal in the view of interaction designers and
in the public view? (d) What would it take in the design of
digital artifice—as opposed to dictates of public policy—to
get people to prefer renewal & reuse to invention & disposal?

(e) How can quality and equality of experience be used to
promote longevity of digital artifice? (f) How can quality in
the design of digital artifice be made available to everyone,
promoting equality of experience and longevity? (g) How
can we get people to want and demand sustainable design
with the materials of technology? (h) How have digital
technologies already transformed notions of ownership and
identity, and what is the sustainable design response to the
present condition? (i) Assuming that not everyone will be
willing to give up the materialism that drives unsustainable
behaviors, how can design influence more sustainable
consumption and what are the tools that can allow designers
to do so?

PRINCIPLES FOR DESIGNING ACCORDING TO THE
PERSPECTIVE OF SUSTAINABILITY
The rubric for understanding particular interaction design
cases in terms of forms of use, reuse, and disposal from the
perspective of sustainability—disposal, salvage, recycling,
remanufacturing for reuse, reuse as is, achieving longevity of
use, sharing for maximal use, achieving heirloom status,
finding wholesome alternatives to use, and active repair of
misuse—is useful for understanding the environmental
impact of interaction design in terms of use of physical
materials and resources, however prompted by the use of
digital materials. The principles presented in the introduction
are general, informal rules of design for considering how the
use of digital materials actually prompts the use of physical
ones and motivates behaviors that affect sustainability one
way or another as part of design process, specifically
(i) linking invention & disposal—is a principle that links

invention as a cause of disposal,
(ii) promoting renewal & reuse—is a principle about the

first-order design requirement for sustainability which
includes several of the categories in the rubric above,
namely salvage, recycling, remanufacturing for reuse,
reuse as is, and sharing for maximal use,

which are the principles treated in this paper. There are three
more principles for future report, all of which relate to
finding ways to promote renewal & reuse over invention &
disposal:
(iii) promoting quality & equality—is a principle about the

second-order design requirement for sustainability
concerning what is required to motivate reuse as is,
achieving longevity of use, sharing for maximal use, and
achieving heirloom status,

(iv) de-coupling ownership & identity—is a broadly
construed principle about fashion, the commons,
security & privacy, and sense of selfhood in the context
of globally changing conditions for the construct of
identity as these motivate relationships to the materials
of consumption, especially with respect to the
possibilities for sharing for maximal use,

(v) using natural models & reflection—is a principle
about promoting imitation of use of resources in nature

CHI 2007 Proceedings • Design Theory April 28-May 3, 2007 • San Jose, CA, USA

507

 JANUARY/FEBRUARY 2016 | IEEE SOFTWARE 59

company’s sustainable develop-
ment. For example, the system can
support sustainability in the supply
chain by making transparent the
carbon footprint of purchases and
facilitating the selection of provid-
ers who apply sustainable practices.
This doesn’t change the overall
project objectives, but it in!uences
subsequent steps.

The scope of analysis starts with
an inclusive, integrated view of the
procurement processes, material
!ows into the company, and the lo-
cal community’s social and political
environment. When de"ning possi-
ble system boundaries, the team ex-
periments with multiple perspectives
and works jointly with the procure-
ment department and others.

The team expands the set of stake-
holders and draws on knowledge be-
yond the team by using a stakeholder
impact analysis. This analysis con-
siders enabling and structural effects
to identify those most affected by the
project, including those external to
the company. Stakeholders include
local supplier representatives, service
delivery organizations, process ana-
lysts, the chief technology of"cer,
and the strategic-planning and fore-
sight group.

To keep the number of stakehold-
ers manageable, a sustainability ex-
pert acts as a surrogate stakeholder
for others in the community and the
further environment that the system
might affect. A team member is as-
signed to each of the "ve sustain-
ability dimensions so that responsi-
bility for identifying possible effects
is clear and effective communica-
tion with additional stakeholders
can take place. These team mem-
bers consult relevant experts in areas
such as supply chain sustainability,
carbon accounting, and socially re-
sponsible procurement. They also

consult anthropologists analyzing
and interpreting current technologi-
cal developments and their impact
on society.

The team agrees that the proj-
ect’s success criteria are not re-
stricted to whether it’s delivered on

time and within budget, but will be
measured and monitored over the
36 months after project comple-
tion. In this period, the team will
measure a set of indicators covering
the "ve sustainability dimensions. It
will try to measure

SUSTAINABILITY
PRINCIPLES FOR
SOFTWARE ENGINEERING

The following principles are based on “Sustainability Design and Software: The
Karlskrona Manifesto.”1

• Sustainability is systemic; a system can never be treated in isolation from
its environment.

• Sustainability is multidimensional; the five key dimensions are economic,
social, environmental, technical, and individual.

• Sustainability is interdisciplinary; sustainability design in software engineer-
ing requires an appreciation of concepts from other disciplines and must
work across disciplines.

• Sustainability transcends the software’s purpose; any software can impact
the sustainability of its socioeconomic, sociotechnical, cultural, and natural
environments.

• Sustainability is multilevel; it requires us to consider at least two spheres
during system design: the system under design and its sustainability, and
the wider system of which it will be part.

• Sustainability is multi-opportunity; it requires us to seek interventions that
have the most leverage on a system2 and to consider the opportunity costs.

• Sustainability involves multiple timescales; it requires long-term thinking to
address the timescales on which sustainability effects occur.

• Sustainability isn’t zero-sum; changing a system’s design to consider the
long-term effects doesn’t automatically imply making sacrifices now.

• System visibility is a necessary precondition and enabler for sustainability
design. This is because only a transparent status of the system and its
context, made visible at different abstraction levels and perspectives, can
enable system designers to make informed responsible choices.

For more on this, see www.sustainabilitydesign.org.

References
 1. C. Becker et al., “Sustainability Design and Software: The Karlskrona Manifesto,” Proc. 37th

IEEE Int’l Conf. Software Eng. (ICSE 15), 2015, pp. 467–476.

 2. D.H. Meadows, Leverage Points: Places to Intervene in a System, Sustainability Inst., 1999.

Authorized licensed use limited to: Lappeenrannan Teknillinen Korkeakoulu. Downloaded on March 30,2020 at 08:13:28 UTC from IEEE Xplore. Restrictions apply.

Becker at al.: Requirements:
The key to sustainability, IEEE
Software, 2016

Handprint of software and systems

Hilty & Ruddy: Towards a Sustainable
Information Society, Informatik, 2000
• Interrelation between the emerging information society and

the goal of sustainability
• Environmental information processing and the impacts of

Information Society Technologies
• Rebound effects
• Eco-efficiency to New lifestyles

• Dematarialization vs. Immaterialization

• Virtual substitutes for physical processes will never be
functionally equivalent to the physical processes, but will
always have some advantages and disadvantages as com-
pared with physical processes

• People may not change their lifestyles for environmental
savings alone, but might be more strongly motivated by some
functional advantage in a cyberworld

Sustainable Information Society

INFORMATIK • INFORMATIQUE 4/2000

3

the result will depend largely on how we ourselves influence
this development.

A basic definition of

sustainable development

 (or

sustaina-
bility

 for short) was given by the World Commission on Envi-
ronment and Development: In order to be considered sustaina-
ble, a pattern of development has to ensure “that it meets the
needs of the present without compromising the ability of future
generations to meet their own needs” [WCED 87].

Since the world conference on environment and development
(UNCED) in Rio de Janeiro in 1992, the goal of attaining sus-
tainable development has become the predominant issue in
international environmental and development policy. It is wide-
ly accepted that sustainability has an environmental, a social
and an economic dimension. A number of national and interna-
tional research programmes and activities have been set up in
order to refine the scientific basis for the sustainability
concept

1

.
In Switzerland there is the the “Sustainable Development in

Switzerland” strategy

2

. The 5th Framework Programme that
defines the European Union’s strategic priorities for research
and technological development is related to sustainable devel-
opment in many respects

3

. Globally, there are such initiatives
as The Alliance for Global Sustainability

4

.
But while the most brilliant researchers are brooding over

their second and third research proposals, discovering many
small and large changes intended to bring society closer to the
objective of sustainability, the world is rapidly changing under
the growing influence of ICT. This change process, which is
transforming us into an information society, has the potential to
substitute information and knowledge for material products to
some extent. But besides this so-called dematerialization, the
change process also entails a progressive globalization of the
economy that has thus far caused more transportation of mate-
rial products and people. Finally, the information society also
means acceleration of innovation processes, and thus an ever
faster devaluation of the existing by the new, whether hardware
or software, technical products or human skills and knowledge.

The rate at which the information society is coming about is
determined by Moore’s Law, which says that the performance
of ICT doubles about every 18 months. It has remained remark-
ably accurate thus far, not only with regard to processor speed,
but also memory capacity and data transmission rates in net-
works. The result is that people can take advantage of more and
more computing power and data transfer without requiring
more space, energy or cost, thus giving rise to new

services

based on this technical infrastructure almost daily, services
which are penetrating more and more areas of our lives.

With this article and issue of INFORMATIK/INFORMA-
TIQUE we would like to demonstrate that there is a close inter-
relation between the goal of attaining sustainability and the
transition to an information society. Let us quote the Informa-

tion Society Forum of the European Commission on this point:
“The question as to whether sustainable development can in
fact be attained will be decided during the transition to a world-
wide Information and Knowledge Society, i.e. it will depend on
the form the Information Society will take.” [ISF 98, p. 12].

In order to make this interrelation evident, we use the catego-
ries of applications and societal impacts of ICT shown in Table
1. The main distinction is between

Environmental Information
Processing (EIP)

 and

Information Society Technologies (IST)

.
The categories will be explained further in the remainder of this
article.

The four articles that follow cover different aspects of these
two topics:

Franz Josef Radermacher

 (p. 10) answers the question in
which political framework IST

could

 contribute to sustainabil-
ity instead of inducing more environmental burden and more
social inequality.

Kurt Fedra

 and

Anthony Vodacek

 (p. 14) describe the state of
the art in two areas of EIP. They show how environmental
information systems and techniques of remote sensing play a
crucial role in environmental decision making.

Stephen Simmons

 (p. 27) focuses on the chances that IST
offers in the context of sustainability. From his point of view,
telework is one of the most advanced of the manifestations of
IST and has the potential both to enhance the quality of life and
reduce material consumption dramatically.

Environmental Information Processing

Computer-based systems for processing environmental
information have been in use for more than three decades now.
A broad range of applications is covered by these systems, in-
cluding monitoring and control, information management, data
analysis, as well as planning and decision support. The generic
name for this type of system is

Environmental Information Sys-
tem (EIS)

 [Günther 98], [Rautenstrauch 00].
Progress in informatics has made an invaluable contribution

to our ability to analyse the biological, chemical and physical

1. For an excellent link collection on sustainable development see
http://www.ulb.ac.be/ceese/meta/sustvl.html.

2. http://www.statistik.admin.ch/stat_ch/ber02/umwelt/eum04.htm
3. http://www.cordis.lu/fp5/home.html
4. http://www.global-alliance.org

2

Environmental
information
processing (EIP)

Public sector:
Environmental
Information Systems
(EIS) operated by public
authorities

Public awareness about
condition of public goods

Prerequisites for political
decisions

Executing instruments of
environmental policy

Private sector:
Environmental
Management Information
Systems (EMIS)

Legal compliance

Environmental reporting
to stakeholders

Eco-efficiency and mate-
rial flow management

Information
Society
Technologies (IST)

Direct impact on material
intensity of economy

Material intensity of ISTs’
product life cycles

Indirect impact on
material intensity of
economy

Substitution potential

Optimization potential

Induction potential

Table 1: Categories of Interaction between ICT and the
Environmental Dimension of Sustainability

Baumer & Silberman: When the Implication is not to
Design (Technology), CHI, 2011
• It is not obvious that the complex conditions associated with

unsustainability—including environmental, political, social, historical,
economic, and other factors—are best addressed with computing
technology
• Could the technology be replaced by an equally viable low-tech or non-technological

approach to the situation?
• Does a technological intervention result in more trouble or harm than the situation

it’s meant to address?
• Does a technology solve a computationally tractable transformation of a problem

rather than the problem itself?
• No single, simple solution will enable us to live sustainably
• Encourages attending to the complex ways technological interventions

reconfigure the situations into which they are introduced

DiSalvo et al.: Navigating the Terrain of Sustainable HCI,
Interactions, 2010
• A dominant genre in sustainable HCI is persuasive technology: systems that

attempt to convince users to behave in a more sustainable way.
• Designers usually determine what constitutes “sustainable behavior,”

• What counts as success is behavior change
or decision making that aligns with the predetermined desired behaviors, although
many papers in this genre do not evaluate sustainability

• How to approach users and their lifestyles: Individuals vs. groups/society
• Question whether a solution for sustainability can be achieved through

technology alone, or perhaps at all
• If technology is not the point, then what becomes the work of sustainable HCI?

• If we agree that fundamental change is needed and it might be change that
users don’t want, who gets to decide what change should happen and
how?

Preist et al.: Evaluating Sustainable Interaction Design of
Digital Services: The Case of YouTube, CHI, 2019

• Application of Sustainable Interaction Design (SID) to understand and
reduce the environmental impact of digital services
• Energy use and associated GHG emissions of systems of products and

infrastructure associated with service use
• Identifying and eliminating digital waste
• Evaluation should consider goal, mechanism, metric, method, and scope

• Corporate GHG strategy

Hindle: If you bill it, they will pay: Energy consumption
in the cloud will be irrelevant until directly billed for,
RE4SuSy, 2018
• We have limited motivation to investigate energy consumption in the

cloud because cloud customers cannot necessarily realize savings
• Much like carbon-taxes, end-user billing of software energy

consumption will promote reduced energy consumption or at least
sustainable energy consumption
• If system operators are choosing software packages and services for

their sustainability footprint then there will be significant pressure on
software developers to address energy consumption as a first-class
non-functional requirement in their software systems

Coroama & Mattern: Digital Rebound – Why
Digitalization Will Not Redeem Us Our Environmental
Sins, ICT4S, 2019
• Types of rebound effect
• Direct - Jevon’s paradox or Backfire
• Indirect – Induction effect, Income and substitution effect, Producer rebound
• Time rebound
• General equilibrium effects and other macro level rebound

• Digitalization and its rebound
• Digitalization without rebound

Increasing the awareness of the effects of
software and systems

Duboc et al.: Do we really know what we are building? Raising
awareness of potential Sustainability Effects of Software
Systems in Requirements Engineering, RE, 2019

• question-based framework for raising awareness of the po-tential
effects of software systems on sustainability

Figure 1. Simplified SusAD diagram for AirBnB system

guidance, however, can be a daunting task, as it is not easy
to elicit the required information. This is especially the case
as the requirements engineers are not trained to consider
sustainability issues [11]. The question-based framework
proposed below aims to facilitate SuSAD diagram construc-
tion and use to further discussions of sustainability-related
impacts between socio-technical system stakeholders.

3.2. Questions Framework

1) Instructions for the interviewer detailing the in-
terview process, e.g., consent to record and collect
data, need to consider chains-of-effects, etc.

2) Questions sheets for each sustainability dimension,
containing questions in plain text, examples, re-
minders and checkboxes. The sheet also suggests
prompts to encourage the interviewee to think fur-
ther, and examples to clarify some of the questions.
E.g. prompt is: “You mention how the system gives
the same treatment to people, what about taking
actions to ensure the outcome for each person
is comparable?”. A clarifying example would be:
“Systems sometimes enable the co-creation or co-
destruction of value when a customer interacts with
the business. For example, [...] when a customer
cannot self-serve as expected, her experience is
affected [...]. Does the system enables this kind of
co-creation or co-destruction of value?”

3) One note-taking form per dimension for the in-
terviewer to capture and record key effects and
dependencies throughout the conversation.

4) Questions for the interviewee, to help respondents
to follow the interview process (same as asked by
the interviewer, but without prompts).

When creating the questions sheets, we did not aim to
have an exhaustive list of topics or questions to address

every aspect of sustainability (which is quite impossible).
Instead, we aimed to give requirements engineers a starting
point for discussing possible sustainability effects. Thus, we
chose to cover only five topics for each dimension, although
additional (system and domain-specific) topics could well
arise for each dimension as the interview progresses. Our
starting sample of topics is listed in the Table 1.

Social (1) Sense of Community; (2) Trust; (3) Inclusiveness and
Diversity; (4) Equality; (5) Participation and Communica-
tion;

Individual (1) Health; (2) Lifelong learning; (3) Privacy; (4) Safety;
(5) Agency;

Environmental (1) Material and Resources; (2) Soil, Atmospheric and Water
Pollution; (3) Energy; (4) Biodiversity and Land Use; (5)
Logistics and Transportation;

Economic (1) Value; (2) Customer Relationship Management (CRM);
(3) Supply chain; (4) Governance and Processes; (5) Inno-
vation and R&D;

Technical (1) Maintainability; (2) Usability; (3) Extensibility and
Adaptability; (4) Security; (5) Scalability;

TABLE 1. TOPICS COVERED BY QUESTIONS IN EACH DIMENSION

Figure 2 exemplifies the questions for social dimension.
The forms can be found in [13].

3.3. Extreme Scenarios and Chains of Effects

The questions (exemplified in Figure 2) are intended to
help uncover possible immediate and longer-term effects. In
order to encourage identification of such impacts, the frame-
work complements questions with a simple note-taking form
(shown in Figure 3) which explicitly draws the attention of
the interviewer to noting down the chains-of-effects.

Yet, interviewees might not consider long-term, com-
pounded impacts. To foster this, the framework suggests
posing an imaginary “extreme” scenario, where the intended
software system is accepted and used by millions of people
worldwide for a long period of time. The interviewee is
then invited to reflect on the impact that such a wide-
spread, long-term use of the system may have. For example,
“Imagine that many people worldwide are using this system
for decades. Think about how one thing may lead to another.
We call this a chain of effects. If people feel closer to their
neighbours, they may choose to buy from local shops or
choose proximity products, which can then foment local
businesses, and finally better distribute wealth.”

4. Research Methodology

This section describes how we have designed the Sus-
tainability Awareness Framework and evaluated the feasibil-
ity of its use. The emphasis is on the clarity and utility of
the question sets for eliciting potential effects of software
systems on sustainability. For this, the following research
questions were addressed:

RQ1: Does the framework encourage insightful dis-
cussions about the potential effects of software
systems on sustainability?

�

Figure 2. Front page of the question sheet for the social dimension

Figure 3. Extract of the notes taking form

RQ2: Does the framework help to identify the po-
tential chains-of-effects of software systems on
sustainability?

RQ3: How practical is the proposed approach?

4.1. Design of Question Sets

To elicit the question sets, we used an adaptation of
the Delphi method [17], [22]. Here, the members of the
Karlskrona Alliance on Sustainability Design [4] acted as
the panel of experts, as they have worked on topics of sus-
tainability for over six years, focusing on various domains,

ranging from social sustainability to energy, and impacts of
technology transfer.

The facilitator (first author of this paper) set out an
online document and invited panel members to contribute
views on factors that affect the five dimensions of sustain-
ability, and questions that a requirements engineer should
consider regarding these factors. Two example software
systems – Airbnb and a procurement system – were used
to ground the discussions. Airbnb was chosen as it is a
generally well known and commonly used system, whereas
the procurement system was studied by the panel of experts
in a previously reported work [3]. The panel then worked
through three rounds of activities to converge on the final
question sets: The first (contribution) round started with the
panel members providing their views by directly editing a
document and populating questions. In this round of ques-
tion elicitation, the panel members were asked to write down
their own contributions, without any other concern. The
facilitator closed this round when all the contributors felt
they had listed the most important issues. She then reviewed
all the questions, removed repetitions and rephrased the
questions for better readability. She also consulted selected
literature (previously suggested by the panel) to refine the
questions. These materials then constituted the result of the

�

Figure 2. Front page of the question sheet for the social dimension

Figure 3. Extract of the notes taking form

RQ2: Does the framework help to identify the po-
tential chains-of-effects of software systems on
sustainability?

RQ3: How practical is the proposed approach?

4.1. Design of Question Sets

To elicit the question sets, we used an adaptation of
the Delphi method [17], [22]. Here, the members of the
Karlskrona Alliance on Sustainability Design [4] acted as
the panel of experts, as they have worked on topics of sus-
tainability for over six years, focusing on various domains,

ranging from social sustainability to energy, and impacts of
technology transfer.

The facilitator (first author of this paper) set out an
online document and invited panel members to contribute
views on factors that affect the five dimensions of sustain-
ability, and questions that a requirements engineer should
consider regarding these factors. Two example software
systems – Airbnb and a procurement system – were used
to ground the discussions. Airbnb was chosen as it is a
generally well known and commonly used system, whereas
the procurement system was studied by the panel of experts
in a previously reported work [3]. The panel then worked
through three rounds of activities to converge on the final
question sets: The first (contribution) round started with the
panel members providing their views by directly editing a
document and populating questions. In this round of ques-
tion elicitation, the panel members were asked to write down
their own contributions, without any other concern. The
facilitator closed this round when all the contributors felt
they had listed the most important issues. She then reviewed
all the questions, removed repetitions and rephrased the
questions for better readability. She also consulted selected
literature (previously suggested by the panel) to refine the
questions. These materials then constituted the result of the

�

Figure 1. Simplified SusAD diagram for AirBnB system

guidance, however, can be a daunting task, as it is not easy
to elicit the required information. This is especially the case
as the requirements engineers are not trained to consider
sustainability issues [11]. The question-based framework
proposed below aims to facilitate SuSAD diagram construc-
tion and use to further discussions of sustainability-related
impacts between socio-technical system stakeholders.

3.2. Questions Framework

1) Instructions for the interviewer detailing the in-
terview process, e.g., consent to record and collect
data, need to consider chains-of-effects, etc.

2) Questions sheets for each sustainability dimension,
containing questions in plain text, examples, re-
minders and checkboxes. The sheet also suggests
prompts to encourage the interviewee to think fur-
ther, and examples to clarify some of the questions.
E.g. prompt is: “You mention how the system gives
the same treatment to people, what about taking
actions to ensure the outcome for each person
is comparable?”. A clarifying example would be:
“Systems sometimes enable the co-creation or co-
destruction of value when a customer interacts with
the business. For example, [...] when a customer
cannot self-serve as expected, her experience is
affected [...]. Does the system enables this kind of
co-creation or co-destruction of value?”

3) One note-taking form per dimension for the in-
terviewer to capture and record key effects and
dependencies throughout the conversation.

4) Questions for the interviewee, to help respondents
to follow the interview process (same as asked by
the interviewer, but without prompts).

When creating the questions sheets, we did not aim to
have an exhaustive list of topics or questions to address

every aspect of sustainability (which is quite impossible).
Instead, we aimed to give requirements engineers a starting
point for discussing possible sustainability effects. Thus, we
chose to cover only five topics for each dimension, although
additional (system and domain-specific) topics could well
arise for each dimension as the interview progresses. Our
starting sample of topics is listed in the Table 1.

Social (1) Sense of Community; (2) Trust; (3) Inclusiveness and
Diversity; (4) Equality; (5) Participation and Communica-
tion;

Individual (1) Health; (2) Lifelong learning; (3) Privacy; (4) Safety;
(5) Agency;

Environmental (1) Material and Resources; (2) Soil, Atmospheric and Water
Pollution; (3) Energy; (4) Biodiversity and Land Use; (5)
Logistics and Transportation;

Economic (1) Value; (2) Customer Relationship Management (CRM);
(3) Supply chain; (4) Governance and Processes; (5) Inno-
vation and R&D;

Technical (1) Maintainability; (2) Usability; (3) Extensibility and
Adaptability; (4) Security; (5) Scalability;

TABLE 1. TOPICS COVERED BY QUESTIONS IN EACH DIMENSION

Figure 2 exemplifies the questions for social dimension.
The forms can be found in [13].

3.3. Extreme Scenarios and Chains of Effects

The questions (exemplified in Figure 2) are intended to
help uncover possible immediate and longer-term effects. In
order to encourage identification of such impacts, the frame-
work complements questions with a simple note-taking form
(shown in Figure 3) which explicitly draws the attention of
the interviewer to noting down the chains-of-effects.

Yet, interviewees might not consider long-term, com-
pounded impacts. To foster this, the framework suggests
posing an imaginary “extreme” scenario, where the intended
software system is accepted and used by millions of people
worldwide for a long period of time. The interviewee is
then invited to reflect on the impact that such a wide-
spread, long-term use of the system may have. For example,
“Imagine that many people worldwide are using this system
for decades. Think about how one thing may lead to another.
We call this a chain of effects. If people feel closer to their
neighbours, they may choose to buy from local shops or
choose proximity products, which can then foment local
businesses, and finally better distribute wealth.”

4. Research Methodology

This section describes how we have designed the Sus-
tainability Awareness Framework and evaluated the feasibil-
ity of its use. The emphasis is on the clarity and utility of
the question sets for eliciting potential effects of software
systems on sustainability. For this, the following research
questions were addressed:

RQ1: Does the framework encourage insightful dis-
cussions about the potential effects of software
systems on sustainability?

�

Condori-Fernandez et al.: Using Participatory Technical-
action-research to validate a Software Sustainability
Model, ICT4S, 2019

• Sustainability Assessment
Framework (SAF)
• Validation of sustainability-

quality model
• Practitioners

• Confirms the multi-
dimensional nature of
sustainability

Table III: New quality attributes and corresponding contributions to the sustainability dimensions

Characteristics Attributes Definitions TECH SOC ENV ECON
Data Privacy Data Privacy privacy concerns arise wherever personally identifiable information is collected,

stored, or used.
Timeliness Timeliness the fact or quality of being done or occurring at a favourable or useful time.
Regulation
compliance

Regulation
compliance

allows to draw conclusions about how well software adheres to application
related regulations in laws.

Scalability Scalability the ability of a computing process to be used or produced in a range of
capabilities

Tailorability Tailorability system’s capability to allow users to create or enable new configuration of
functionality as well as control information provision.

third practitioner was involved in some of the meet-
ings. Moreover, the researchers reviewed carefully the
existing technical documentation to triangulate the data
collected from the focus-group meetings.

External validity. The action is implemented in a
specific social setting, which can hinder the general-
ization of the results. However, we could apply our
findings to other projects with similar characteristics.
Moreover, the transferability within the setting studied
may be high if the context is similar. On the other hand,
as our initial sustainability-quality model was defined
based on the ISO/IEC 25010 standard [25], we consider
that its generality could be more easily adaptable to
other domains, such as those that were considered by
the GIRO project.

V. RELATED WORK

Being able to identify the relevant quality require-
ments on sustainability is the first step towards develop-
ing software-intensive systems that fulfill sustainability
concerns by design [9].

Venters et al. [26] discussed the notion of software
sustainability based on the analysis of the literature.
After debating if it should be considered as a non-
functional requirement or an emergent property, the
authors conclude it to be a multi-faceted concept and
argue for a quantitative approach.

Based on the ISO/IEC 25010 Standard, Calero et
al. [6] provide a preliminary discussion of which qual-
ity characteristics should be considered in addressing
software sustainability. As a next step, they propose
the definition of a quality model where sustainability
is part of the quality of software products. In contrast
to our work, Calero et al. defined sustainability only in
terms of energy consumption, resource optimization and
perdurability (reusability, modifiability, and adaptabil-
ity). Originated in the 2013 GREENS workshop [27],
Lago et al. [8] defined a four-dimensional model that
extends the social, environmental and economic dimen-
sions (rooted in the Brundtland report [28]) with the
technical dimension. Later on, Lago introduced the Soft-
ware Sustainability Assessment (SoSA) method [29],

which helps scoping architectural concerns and quality
requirements along the four dimensions above.

Becker et al. [30] have a similar approach but
grounded in requirements engineering instead. In ad-
dition to the above four sustainability dimensions, they
add the individual as a fifth sustainability dimension.
We argue that the social dimension and the individual
dimension share the same social nature. Differently,
the first takes a broader perspective (e.g. organizations,
society, stakeholder types). This is especially relevant in
software architecture, which aims at capturing “the big
picture”. The second dimension, instead, is appropriate
whenever the concerns of the individual (e.g. end-
user, citizen) should be addressed. This naturally comes
forward more frequently in requirements engineering
and human-computer interaction.

VI. CONCLUSIONS AND FURTHER WORK

The present empirical study was designed to validate
the Sustainability Assessment Framework (SAF) within
an action-research setting. This paper focused mainly on
the sustainability-quality model, one of the instruments
of the SAF framework, that has been applied in one
of the software products developed under the GIRO
project. As a result of this application, from a prac-
titioner perspective (RQ1), the proposed sustainability-
quality model was found as a useful instrument for (i)
identifying the relevance level of QAs that contribute to
different sustainability dimensions (e.g. trust, modifia-
bility, efficiency), and (ii) discovering quality require-
ments that had not yet been addressed in the project
at hand (e.g.context-completeness, flexibility, testability,
capacity). From a researcher perspective (RQ2), the
study has helped uncovering new missing QAs that were
identified as relevant to be included in the sustainability-
quality model (e.g. regulation compliance, data privacy).

As a further work, we plan to apply the decision
maps and the metrics, by using the same software prod-
uct, and replicate the validation of the sustainability-
quality model, by involving a new GIRO software
product within the same action-research environment.
Our sustainability model will be also enriched with the
findings obtained from the case study reported in [31].

9

Table II: Sustainability-quality analysis of the MWM system (Green cell= QA is addressed, orange cell= QA is
discovered as relevant, light-gray cell= QA is in the model but not relevant for the project, += new contribution)

Characteristics Attributes Definition according to [9] TECH SOC ENV ECON

Compatibility Co-existence product can perform its functions efficiently while sharing environment and
resources with other products.

Interoperability a system can exchange information with other systems and use the information
that has been exchanged.

Context cov-
erage

Context com-
pleteness

system can be used in all the specified contexts of use

Flexibility system can be used in contexts beyond those initially specified in the require-
ments.

Effectiveness Effectiveness accuracy and completeness with which users achieve specified goals.
Efficiency Efficiency resources expended in relation to the accuracy and completeness with which

users achieve goals.
Freedom
from risk

Economic risk
mitigation

system mitigates the potential risk to financial status in the intended contexts of
use.

Environmental
risk mitigation

system mitigates the potential risk to property or the environment in the intended
contexts of use.

Health and
safety risk
mitigation

system mitigates the potential risk to people in the intended contexts of use.

Functional
suitability

Functional ap-
propriateness

the functions facilitate the accomplishment of specified tasks and objectives.

Functional
correctness

system provides the correct results with the needed degree of precision.

Functional
completeness

degree to which the set of functions covers all the specified tasks and user
objectives.

Maintainability Modifiability system can be effectively and efficiently modified without introducing defects
or degrading existing product quality

+

Modularity system is composed of components such that a change to one component has
minimal impact on other components.

Reusability an asset can be used in more than one system, or in building other assets +
Testability effectiveness and efficiency with which test criteria can be established for a

system.
Performance
efficiency

Capacity the maximum limits of a product or system parameter meet requirements.

Resource uti-
lization

the amounts and types of resources used by a system, when performing its
functions, meet requirements.

Time
behaviour

response, processing times and throughput rates of a system, when performing
its functions, meet requirements.

Portability Adaptability system can effectively and efficiently be adapted for different or evolving
hardware, software or usage environments.

Replaceability product can be replaced by another specified software product for the same
purpose in the same environment.

Reliability Availability system is operational and accessible when required for use. +
Fault tolerance system operates as intended despite the presence of hardware or software faults.
Maturity system meets needs for reliability under normal operation.
Recoverability system can recover data affected and re-establish the desired state of the system

is case of an interruption or a failure.
Satisfaction Trust stakeholders has confidence that a product or system will behave as intended.

Usefulness user is satisfied with their perceived achievement of pragmatic goals.
Security Accountability actions of an entity can be traced uniquely to the entity.

Authenticity the identity of a subject or resource can be proved to be the one claimed.
Confidentiality system ensures that data are accessible only to those authorized to have access.
Integrity system prevents unauthorized access to, or modification of, computer programs

or data.
Usability Appropriateness

recognizability
users can recognize whether a system is appropriate for their needs, even before
it is implemented.

Learnability system can be used to achieve specified goals of learning to use the system. +
Operability system has attributes that make it easy to operate and control.
User error pro-
tection

system protects users against making errors. + +

Accessibility Accessibility system can be used by people with the widest range of characteristics and
capabilities.

Robustness Robustness Refers to the capability of the sytem to behave in an acceptable way in
unexpected situations

Survivability Survivability The degree to which a system continues to fulfil its mission by providing
essential services in a timely manner in spite of the presence of attacks

Regulation compliance. As the main business re- quirement of the customer company is to get that dead

7

Penzenstadler B. et al.: Software Engineering for
Sustainability - Find the Leverage Points!, IEEE Software,
2018

• “Leverage points are places within a
complex system (a corporation, an
economy, a living body, a city, an
ecosystem) where a small shift in one
thing can produce big changes in
everything.” Meadows D.H., 1999
• Software engineers need to be aware

of the power of software systems as a
transformational force in society and
the significant impact that their
designs can have.

 JULY/AUGUST 2018 | IEEE SOFTWARE 25

increasing order of the likely magni-
tude of their effect:

• changing the metabolic structure
of the system,

• changing the feedback loops,
• transformational change,

and
• changing the intent of the system

and stakeholders.

For a synopsis of the role of soft-
ware in relation to LPs in our UK
transportation example, see Table 1.
(Throughout the rest of the article,
“LP 1,” “LP 2,” and so on indicate

LEVERAGE POINTS

Donella Meadows stated that “Leverage points are places within a complex system (a corporation, an economy, a living body, a
city, an ecosystem) where a small shift in one thing can produce big changes in everything.”3 Table A lists the leverage points (LPs)
in increasing order of effectiveness according to Meadows. While all LPs can bring about change, the later ones are more likely to
create signi!cant changes to the system behavior but may also require more effort to implement. Meadows’s LPs refer to any kind
of change, whether enabled by software or not. In the main article, we use them as an analysis tool for exploring how software can
trigger broader changes in societal systems. However, they are hard to identify and act on—they are not a silver bullet.

Table A. Leverage points.3

Leverage point Description

LP 12 Constants, parameters, and numbers. Tweaking parameters allows change to the intensity of the "ows in systems but
rarely alters the underlying dynamics.

LP 11 The sizes of buffers and other stabilizing stocks, relative to their "ows. Stabilize a system by adjusting the capacity of its
buffers, and make it more ef!cient by optimizing the "ow.

LP 10 The structure of material stocks and "ows (such as transportation networks and population age structures). Physical
structure is crucial in a system but often hard to change; therefore, the leverage point is in proper initial design.

LP 9 The lengths of delays, relative to the rate of system change. A system cannot respond to short-term changes when it has
long-term delays.

LP 8 The strength of balancing feedback loops, relative to the impacts they respond to. Balancing feedback loops help systems
to self-correct by monitoring and adjusting according to the system goal.

LP 7 The gain around reinforcing feedback loops. Reinforcing feedback loops can be sources of system instability or
mechanisms to amplify desired change, so adjusting their strength affects how the system responds to change.

LP 6 The structure of information "ows. This can create a new feedback loop that was not there before. Altering the structure of
information "ows enables more agency by users.

LP 5 The rules of the system, including incentives, punishments, and constraints. Social rules include constitutions, laws,
standards, policies, and incentives. Changing the rules of a system can change the behavior of the society under them.

LP 4 The power to add, change, evolve, or self-organize system structure. In biology, this is called evolution; in society, we call it
empowerment. In systems terms, it is called self-organization, the strongest form of system resilience.

LP 3 The goals of the system. Changing the goal of a system is a powerful strategy to effect change but can be hard to achieve.

LP 2 The mind-set or paradigm out of which the system arises. Paradigms are a shared set of deep beliefs about how the world
works. They are the hardest to change in a system, as society will !ercely resist any challenges to its paradigms.

LP 1 The power to transcend paradigms. This !nal and most effective LP is about being unattached to existing paradigms; there
is no certainty in any particular worldview.

