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Aim of this study

This study is performed by people working on software (engineering)
and sustainability related issues within Karlskrona Sustainability Design
Alliance

This study is prepared for the Finnish Ministry of Transportation and
Communication working group on Climate and Environment effects of
ICT (#ICTClimate)

The aim of this study is to collect information from literature concerning
the ways software and systems, as well as processes of software
engineering, can have an effect on environment and thus climate.



Categories to be considered

o Footprint of software and systems
o Energy efficiency issues as a way to decrease the footprint

o Sustainability within software engineering process
o Sustainability as a quality attribute
o Handprint of software and systems

e Increasing the awareness of the effects of software and systems



Calero & Piattini: Introduction to Green in Software

Engineering, Green in Software Engineering, Springer,
2015
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Footprint of software and systems
(energy efficiency)



Taina: How green is your software?, ICSB, 2010

* Since a software has a life cycle, it creates direct and indirect carbon
emissions: it has a carbon footprint

e Software has indirect resource requirements

e 1) Development: The software is implemented,2)Beta testing:
Potential customers test the software, 3) Delivery and re-delivery: The
software is delivered to customers, 4) Usage: The software is used
and 5) Maintenance: The software is updated.
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Johann et al.:

: How to Measure Energy-Efficiency of

Software: Metrics and Measurement Results, GREENS,

2012

* Generic metric to measure software and a method to applyitina

software engineering process
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Ahmad et al.: A Review on mobile application energy
profiling: Taxonomy, state-of-the-art, and open research

Issues, INCA, 2015

* Hardware-based energy pro- filing schemes are
expensive, labor-intensive, and non-scalable
compared with software-based solutions

* Hardware-based energy profiling schemes are highly
accurate for the specific mobile device for which they
areddelveloped, but worst accurate for other device
models

» Software-based energy profiling estimates battery
consumption at diverse granularities, such as process,
thread, function, line, or path, by maximizing
numerous power tracking resources

* The correctness of software-based energy profiling
designs is affected by the accuracy level offered by
the voltage and current sensors ot the smart battery

a

Mobile Phone

Operating System

Running Application
(Target Application)

Mobile Battery |

b

Mobile Phone

Operating System
. (Target Application)
Energy Logging Module

API

Mobile Battery

MOBILE APPLICATION ENERGY PROFILING
SCHEMES

— Software Based Profiling

Granularity

> Model Flexibility

Profiling Type

Nokia Energy Profiler
ource Program Analysis

Logging/Traces

BMU

Smart Battery Interface

Battery Usage Curve
Dynamic
Static
On-line
Off-line

Hardware Based Profiling [—

Granu larity l—

Deterministic Power Model Design [<—
S

tatistical

nt
Data Acquisition Board
Back Light
Hewlet Packard 3548a
Agilent Multimeter

Measurement Source

Automated

IRVAR

Manual




Energy efficiency of various software
elements ... examples

* Vlad Christea: Energy Consumption of Applications on Mobile Phones,
M.Sc. Thesis, 2017 — energy usage of screen elements

* Dagnachew Temesgene: Cyber foraging for green computing,
improving performance and prolonging battery life of mobile devices,
M.Sc. Thesis, 2016 — energy usage of different functions of mobile

phones

* Mustagim Rahman: Analysing API Calls to Reduce Energy
Consumption of Apps in Idle States, M.Sc. Thesis, 2017 —

benchmarking APl performance




Interim conclusion

* Energy efficiency of software in different environments can be
measured BUT
* Results are highly contextual (environment)
e Results are hard to compare

* Energy efficiency is only one part of the picture

» Software is always tied to hardware
* Optimising energy efficiency now may have an effect on other sustainability effects



Jagroep et al.: Extending software architecture views

with an energy consumption perspective, Computing,
2016

» Software vendors are not able to address energy consumption on software level

* Energy consumption of software is measured by relating the energy consumption of hardware to

computational resource usage on behalf of the software and, consequently, energy efficiency refers to
the efficient use of computational resources

* Use energy profilers; software tools including a power model with the ability to estimate the software
EC on different levels of granularity, not always efficient

* Architecture Description (AD) of product software complemented with Energy Consumption

measurements, could help to direct green computing efforts (i.e. Energy Efficient (EE) algorithms )
and determine appropriate adjustments on the right locations

» creation of Energy Efficient software starts with the design of the software, i.e. with its architecture
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Kern et al.: Green software and green software
engineering—definitions, measurements, and quality

aspects, 2013
* Measurement of software
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Procaccianti et al.: The Green Lab:Experimentation in
Software Energy Efficiency, 2015

e Software Energy Efficiency is a research area that lacks well-defined,

validated methods
* Chaotic behavior
* Complexity of measurement
* Anecdotal and contradictory evidence

* Lack of a unified approach

 How to combine the traditional hypothesis-driven (top-down)
approach with a bottom-up discovery approach
* Energy hotspots
* Energy bugs
* Energy smells



Capra et al.: Is software “Green”?, Information and
software technology, 2012

* A higher use of application development environments has a
detrimental effect on software energy efficiency

* small to average size applications the use of application development
environments is associated with greater software energy efficiency, but that
for larger applications the opposite is true

* The detrimental effect of using application development
environments on energy efficiency is more pronounced for larger
than for smaller applications

* large application typically oc- curs by embedding initial modules inside other
larger modules. This may unnecessarily increase the number of layers that

must be crossed to execute a single operation



Bozzelli et al.: A SLR on green software metrics,
2014

* What green metrics have been proposed in the

Software Engineering literature?

* How green metrics can be classified?

Metrics Type

Total

Measurement
Unit(s)

Energy

48

Joule (J), Index,
Watt (W),
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Kilowatt-hour
(kWh), Number,
byte/kWh

Years
Metrics Type 001 002 | 2008 | 2009 01 2011 | 2012 | Total
Energy 2 3 21 4 8 5 5 48
Performance 0 0 0 0 2 10 7 19
Utilization 0 0 0 0 3 10 4 17
Economic 0 0 0 0 0 4 5 9
Performance / Energy 0 0 0 0 0 1 1 2
Pollution 0 0 0 0 0 1 0 1
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Ardito & Morisio: Available data and guidelines for
reducing energy consumption in IT systems, Sustainable
computing: Informatics and Systems, 2014

* Energy efficiency guidelines (complex)

* Infrastructure ...

e Application
* Design efficient Ul - simplified interaction
e Event based programming — sleeping
* Low level programming — use of system optimization
* Batch II/O —sleeping
* Code migration — optimized execution
* Reduce data redundancy — storage and transfer optimization
* QoS scaling — behavior change
* Profiling tools — optimization

* Operating systems
* Power management
* Optimal use of peripherals
* Compiler optimization
* Background process optimization

* Hardware ...



Sustainability within software engineering
process



Naumann et al.: The GREENSOFT Model, Sustainable
computing: Informatics and Systems, 2011

* “Green and Sustainable Software” and “Green and Sustainable
Software Engineering”
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Lago et al.: Leveraging “Energy Efficiency to Software
Users”, GREENS/ICSE, 2013

e Social, environmental, economic, technical sustainability
dimensions \
* A framework framing green software quality
« green concerns - potentially impact all other system qualities, ey

demanding for an additional dimension that frames both types
of qualities for trade-offs analysis and decision making R piieatan T ———
domain service

(functionality,

* The role of stakeholders — what stakeholders matter in ceiabi
software sustainability %

* Green trade-off analysis - spans all four sustainability
dimensions

Environmental
view (CO2, Wh)

Social view

e Sustainability goals and design concerns

* all sustainability dimensions should be made explicit in the same
way as they are for (technical) design and architectural concerns

* Environmental sustainability needs context



Lago et al.:

Framing sustainability

as a property of software quality,

CACM, 2015

Framework by extending an existing model,
the Third Working Draft of ISO/IEC 42030
Architecture Evaluation

* Traditional software decision making con-
siders trade-offs either between different
technical sustainability criteria (such as
performance versus availability) or between
technical sustainability criteria and
economic sustainability criteria (such as
performance versus costs)

e Sustainability-related software decision
making involves trade-offs between
environmental sustainability criteria (such
as energy efficiency) and social, economic,
and technical sustainability criteria

Figure 1. Framework for sustainability software-quality requirements.
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Figure 3. Sustainability quality requirements: car-sharing platform.
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Condori-Fernandez & Lago:
Characterizing the contribution of
guality requirements to software
sustainability, JSS, 2018

* Key challenge for software sustainability is its
characterization as a software quality requirement

» Software quality characteristics defined by the
ISO/IEC 25010 standard quality models

» Software architects, Project managers, Sustainable
ICT experts, Requirement engineers

CHARACTERISTICS SUB-CHARACTERISTICS
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* Qualities identified as good contributors to technical sustainability (Functional
correctness, functional appropriateness, availability, modifiability, interoperability and
recoverability) favor positively the endurability of software systems

* Some of maintainability requirements
(in terms of reusability and

modifiability) as relevant for

addressing environmental

sustainability

A38 Maintainability Reusability 11/16 2/16  13/16

A39 Performance Resource 11/16  4/16  15/16
efficiency utilization

A31 Efficiency Efficiency 9/16 6/16  15/16

A22 Maintainability Modifiability ~ 8/16  4/16  12/16

A16 Compatibility  Co-existence 8/16  7/16  15/16

A19 Reliability Availability 7/16  4/16  11/16
Freedom  from Environmental

All risk risk mitigation s BLE 12

A26 Performance Time 6/16 6/16 12/16
efficiency behaviour

Item

Economic sustainability

Technical sustainability

Social sustainability

Environmental sustainability

Social sustainability

Economic sustainability

Environmental sustainability

Technical sustainability

Technical sustainability

Economic sustainability

Environmental sustainability

Social sustainability

Overall Rank

]

2

3

Rank Distribution

|
|
|
|
]

O O
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O
|
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Lowest Rank Highest Rank

Score

30

29

11
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37

34

26
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113

109

108
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8
9
6

6

14
14
14

14

45
44
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44



Karita et al.: Software industry awareness on green and
sustainable software engineering: a state-of-the-

practice survey, SBES, 2019

v o
Technical [ Social Environmental][ Economic ]

* RQ3: What phases of the software development life cycle
(SDLC) do sustainable practices apply?

! . I 1
* RQ4: What dimensions of sustainability have been Reuvse Quality of e | | Lowerimpact | | productivity
explored in practice (technical, environmental, social and + Comtaﬁng - jr t
eco- nomic) of software development? G°°"’1”“°es g durability
* RQ5: What models for sustainable software development Code qualit e
have been adopted by the software industry? — —

Methodologies efficiency

 RQ6: What tools have been used to support sustainability
in the software development process?

Dimensions Sustainability concern  Irrelevant (1) Less important (2) Neutral (3) Important(4) Very important (5)
9 Technical Longevity 1 12 12
8 8 Technical Resilience to uncertainty 11 14
; Technical Performance 1 9 15
6 Technical Software Evolution 1 1 13 10
6 5 Technical Reusability 7 18
5 Technical System Quality 5 20
4 Social Product Roadmap 1 3 13 8
3 > Social Awareness 1 1 13 10
2 Social Ethics 3 11 11
1 l Environmental — Energy consumption 1 5 10 8
0 Environmental  Environmental concern 1 6 13 5
Requirements Design Development Testing
Economic Time to Market 3 11 10
Economic Development effort 3 12 10




Becker at al.: Requirements: The key to
sustainability, IEEE Software, 2016

 Sustainability has often been equated with environmental issues, but it
requires simultaneous consideration of environmental resources, societal
and individual well-being, economic prosperity, and the long-term viability
of technical infrastructure
* trade-offs occur across other dimensions

* A software system’s impact on its environment is often determined by how
the software engineers understand its requirements

» sustainability debt: decisions made for the present situation have invisible effects
that accumulate over time in each of the five dimensions

* A series of decision points occurs during system design. Many of them are
requirements-engineering activities that occur repeatedly in all iterations

throughout the projects



Standard current practice Focus of future practice

Mind-setting

Determination of the
project objective and
the system purpose,
boundary, and scope

External constraint
identification

Stakeholder
identification

Success criteria

definition

Requirements
elicitation

Risk identification

Tradeoff analysis

Go/no-go decision

Requirements
validation

Project completion

Requirements
documentation

The world is a puzzle, and we should solve
the problem.

Focus on the immediate business need and
key system features. Don’t question the
project’s or system’s purpose.

See constraints as imposed by the direct
environment of the system and its technical
interfaces. Minimize the constraints
considered, but include legal, safety,
security, technical, and business resources.

Minimize the number of stakeholders
involved, and focus on those who have
influence. Focus on internal stakeholders,
and exclude unreachable stakeholders.

Focus on the financial bottom line at project
completion. Measure the business outcome
and financial return on investment.

Focus on the features and immediate effects
the stakeholders want.

Identify risks that threaten timely project
completion within the budget.

View tradeoff analysis as a prioritization
and selection problem, and let the key
stakeholders decide.

Base the decision on feasibility, financial
costs and benefits, and risk exposure

to project participants—that is, internal
stakeholders.

Let key stakeholders verify that their
interests are captured.

Verify whether success criteria are met on
the completion date. After that, focus on
maintenance and evolution.

Current templates ignore long-term effects
and sustainability considerations.

The world is complex, and we should first understand the
dilemmas.

Emphasize how the project can affect sustainability in all
dimensions. Strive to advance sustainability in multiple
dimensions simultaneously. Experiment with different system
boundaries to understand the alternative impacts.

See constraints in each dimension as opportunities. Look for
constraints from additional sources, starting with company
corporate-social-responsibility policies, legislation, and
sustainability standards.

Maximize stakeholder involvement in an inclusive perspective
integrating external stakeholders, and involve those who

are affected. Assign a dedicated role to be responsible for
sustainability, and introduce surrogate stakeholders to represent
outside interests.

Focus on advancing multiple dimensions simultaneously,
including financial aspects, and take into account that most
effects occur after project completion.

Help the stakeholders understand the system’s enabling effects.
Use creativity techniques and long-term scenarios to forecast
the potential structural impact.

Include the effects on the system’s wider environment. Include
enabling and structural effects and risks that can develop over
time.

Strive to transform sustainability tradeoffs into mutually
beneficial situations. Ensure that a wider range of stakeholders
(or their surrogates) discuss sustainability tradeoffs.

This continues to be an internal business decision but is
documented to show to external audiences that it took into
account sustainability indicators and enabling effects. The
decision is based on a consideration of positive and negative
effects in all five dimensions.

Ensure broad community involvement focused on understanding
effects.

Evaluate the effects in all five dimensions over a certain time
frame after completion, aligned with the expected timescale of
effects.

Templates require information about sustainability as a design
concern and support analysts with checklists.



Penzenstadler et al.: Everything is
INTERRELATED:Teaching Software Engineering for
Sustainability, SEET/ICSE, 2018

* Keeping the sustainability in the process from the beginning
* From problem domain to solution domain

* Getting all relevant stakeholders involved
* Having clear sustainability objectives

Context / Environment / Problem Domain Requirements / System / Solution Domain
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Venters at al.: Characterising Sustainability
Requirements, SEIS/ICSE, 2017

e Term ‘sustainability requirement’ in software and requirements

engineering

e constructed in a way that suggests it is different in the way from how we
understand requirements in general

Area Key concepts Motivation Main actors Sustainability requirement context

IS Cost effectiveness Improve cost effective- | Business, Regulators, | Metrics and controls context, “such as
Process improvement ness of process, aiming | Customers operating and capital cost, safety, en-
Process structuring for cost reduction. ergy cons., waste gen., efficiency”

ICT Optimisation of IT | Improved resource and | Customers, employees, | Environmental sustainability related to
infrastructure, Green | energy efficiency of | business partners, | energy consumption and performance
computing, Environmental | ICT NGOs
sustainability,  Sustainability
of IT services, Longevity of
energy systems

SW Software development process | Environmental impacts | Software developers, | Implicit non-functional qualities

Eng models of ICT administrators, users

Sys Optimize systems considering | Economic expectations | All stakeholders | Sustainability requirements have to be

Eng sustainability issues and environmental con- | in  context, noting | communicated

sciousness they have varying
background

Ergo- Multi-dimensional understand- | Economic and | Wide range of stake- | Environmental context and long life cy-

nomics | ing with economic, social, and | business-strategic holders, including all | cles
environmental aspects, human factors | designers

RE Multi-dimensionality of sus- | Make sustainability | Decision making | Multiple dimensions and trade-offs:
tainability, Interdependence of | more tangible, Make | households and/or | ‘Achieve acceptable level of service
dimensions, Trade-offs, Gen- | related goals explicit, | software professionals, | (...), have min. impact on natural env.,
eral models of sustainability Assess sustainability regulators be socially and economically accept-

able’




Seyff et al.: Tailoring Requirements Negotiation to
Sustainability, RE, 2018

* Existing RE methods and tools do not explicitly facilitate the
discussion and negotiation of sustainability-related concerns

* |leads to insufficient or one-dimensional perceptions of sustainability

* Adapted EasyWinWin approach

Idenfiy Issues, Options and Agreements Sustainabilty Dimensions Orders of Effects
Identifer Description Individ. | Social | Economic | Environ. | Technical | Immediate | Enabling | Structural
Win Condition 1| The webshop shall notfify user of all new products neg X X X X X
Individ.
Issue 1 If too many notifications are sent this could lead to spam neg neg neg neg Environ. | Economic
Technical
What if the users do not have an interest in these Individual
Issue 2 neg neg .
products? Economic
: : : Individ.
Option 1 There is a maximum number of messages sent to a X X
¢ ; ; 1 1 -1 -1 Environ. | Economic
for Issue 1 customer per a predefined period of time !
Technical
Option 2 . . . Inleld:
Messages are only sent for highly attractive products 2 2 -1 -1 Environ. | Economic
for Issue 1 :
Technical
- ¢ : Individ.
Option 1 We just send info for products the customer has ;
. 3 2 -1 -1 Economic
for Issue 2 declared interest ;
Technical
Agree'ment The webshop shall notfify user of new key products
for Win ; ; 2
e which they have declared an interest in.
Condition 1




Seyff et al.: Crowd-Focused Semi-Automated

Requirements Engineering for Evolution Towards
Sustainability, RE, 2018

* No established means to analyse the impact of a given requirement on
sustainability

* Concept of sustainability requirements
* non-functional requirement or software quality aligned with one or more of the sustainability
dimensions

* Expect that requirements positively affecting sustainability ideally have an overall
long- term positive effect on one or more sustainability dimensions

e Can also be used to support the elicitation,
analysis, and negotiation of user concerns
regarding other issues (e.g., usability,
accessibility, or performance)




Venters et al.: Software sustainability: Research and

practice from a software architecture viewpoint, JSS,

2018

» Software systems are sustainable if they can be cost-efficiently maintained and evolved over their entire life-
cycle, which is arguably determined by the software architecture

* mechanism for reasoning about key software qualities (e.g. maintainability, extendability, scalability, security,
performance, reliability, portability etc.)

Software sustainability, Software

architecture sustainability,

Sustainable software architecture

decisions

* Architecture drift, erosion,

Sustainability debt

loss of quality of a system must be
estimated using appropriate
indicators and metrics that can smell
that the quality is decreasing during

evolution cycles

key issue in assessing the value of
software metrics is whether they

support decision- making.

Overview of software metrics that can be used to estimate architecture sustainability.

Architecture level metrics

Smells

Metrics

Quality attributes

Maintenance

Evolution

Smells about ambiguous and unused interfaces,
when functionality of modules are rather small
or big and those smells concerning delegation of
functionality

Smells that effect to duplicate functionality and
coupling between components

Smells where multiple components realise the
same concern or a component implements an
excessive number of concerns. Therefore, we can
identify components with a suitable percentage
of methods

We identify components with an excessive number
of dependencies, cyclic dependencies and
dependencies that crosscut layers

Other cross-cutting smells affecting any part of the
architecture

Elements that change too often, Number of
elements impacted by a change

Likelihood of components that evolve together

Architecture knowledge level metrics

Maintenance

Evolution

Excessive number of decisions and trace links
Too many AK items and decision alternatives
A change impact on many decisions

Obsolete decisions and frequent changes

Module interaction index, Attribute hiding factor,
API function usage index, Module Size Uniformity
Index, Module Size Boundedness Index

Clone detection, Coupling between object, Ratio of
cohesive interaction, Modularization Quality

Concern diffusion over architectural components,
Component-level interlacing between concerns,
Number of concerns per component, Well-sized
Methods Index

Cyclic dependency index, API function usage index,
Layer Organization Index, Cumulative component
dependency, Excessive structural complexity

Architectural smell coverage
Architectural smell density

Instability, Ripple effect, Distance from Main
Sequence, Module Interaction Stability Index

Bi-directional coupling component

NodeCount, EdgeCount

Cost of AK capturing effort

Ripple effect, instability, change proneness
Decision volatility

Complexity, Modularity
(Mitchell, 2006), Analyzability,
Effectiveness, Understandability

Reusability, Complexity,
Modifiability, Modularity

Reusability, Modifiability,
Understandability, Modularity

Modularity, Understandability,
Changeability Modifiability

Cost
Stability, Evolvability

Complexity, Evolvability

Complexity, Stability
Cost

Changeability, Stability
Timeliness




1. disposal—does the design cause the disposal of physical
material, directly or indirectly and even if the primary

1C» 1 1 1 . material of the design is digital material?
B | eVl S . S U Sta I n a b | e | nte ra Ct | O n DeS I g n . 2. salvage—does the design enable the recovery of
previously discarded physical material, directly or

|nvent|0n & DlSposa|, Renewal & Reuse’ indirectly and even if the primary material of the design

is digital material?
C H | 2 O O 7 3. recycling—does the design make use of recycled
) physical materials or provide for the future recycling of
physical materials, directly or indirectly and even if the
primary material of the design is digital material?

¢ FOCUS iS - rimarily on e-nVirOnmental SUStain-a bility 4. remanufacturing for F'euse—d(?es the design provide
and the |nk between Interactlve teChnO|Og|eS for the renewal of physical material for reuse or updated

use, directly or indirectly and even if the primary

an d t h e use Of resources material of the design is digital material?

5. reuse as is—does the design provide for transfer of

° Softwa re an d ha rd ware are i nti m ate Iy conn ected ownership, directly or indirectly and even if the primary

material of the design is digital material?

to d CyCIe Of m utu al () bSO I escence 6. achieving longevity of use—does the design allow for

long term use of physical materials by a single owner

° If we agree th at fu nd ame nta | Cha nge iS N eed ed without transfer of ownership, directly or indirectly and

even if the primary material of the design is digital

and it might be the change that users don’t want, materal? |

who gets to decide what change should happen " e af hysical mateials by many people 3 a consrct

an d h ow ? of dynamic ownership, directly or indirectly and even if
the primary material of the design is digital material?

° Llnklng |nvent|0n & dISpOsa|, prOmOtlng renewal 8. achieving heirloom status—does the design create

artifice of long-lived appeal that motivates preservation

& r‘euse’ prOmOtlﬂg quahty & equahty’ de- such that transfer of ownership preserves quality of

experience, directly or indirectly and even if the primary

cou p I | ng owne rSh | p & |de ntlty, US| ng N atu I'a I material of the design is digital material? This notion of
m Od e | S & ref | ectlo N heirloom status is similar to Nelson & Stolterman’s [30]

description of “ensoulment”.
9. finding wholesome alternatives to use—does the

10. active repair of misuse—is the design specifically design eliminate the need for the use of physical
targeted at repairing the harmful effects of unsustainable resources, while still preserving or even ameliorating
use, substituting sustainable use in its place? qualities of life in a manner that is sensitive to and

scaffolds human motivations and desires?



Becker at al.: Requirements:
The key to sustainability, IEEE
S Oftwa re , 2 O 1 6 The following principles are based on “Sustainability Design and Software: The

Karlskrona Manifesto.”

e Sustainability is systemic; a system can never be treated in isolation from
its environment.

e Sustainability is multidimensional; the five key dimensions are economic,
social, environmental, technical, and individual.

e Sustainability is interdisciplinary; sustainability design in software engineer-
ing requires an appreciation of concepts from other disciplines and must
work across disciplines.

e Sustainability transcends the software’s purpose; any software can impact
the sustainability of its socioeconomic, sociotechnical, cultural, and natural
environments.

e Sustainability is multilevel; it requires us to consider at least two spheres
during system design: the system under design and its sustainability, and
the wider system of which it will be part.

e Sustainability is multi-opportunity; it requires us to seek interventions that
have the most leverage on a system? and to consider the opportunity costs.

e Sustainability involves multiple timescales; it requires long-term thinking to
address the timescales on which sustainability effects occur.

e Sustainability isn’t zero-sum; changing a system’s design to consider the
long-term effects doesn’t automatically imply making sacrifices now.

e System visibility is a necessary precondition and enabler for sustainability
KAR LS K RO N A MAN | F E ST design. This is because only a transparent status of the system and its
FOR SUSTAINABILITY DESIGN context, made visible at different abstraction levels and perspectives, can

enable system designers to make informed responsible choices.

For more on this, see www.sustainabilitydesign.org.



Handprint of software and systems



il

Interrelation between the emerging information society and
the goal of sustainability

Environmental information processing and the impacts of
Information Society Technologies

Rebound effects

Eco-efficiency to New lifestyles
 Dematarialization vs. Immaterialization

Virtual substitutes for physical processes will never be
functionally equivalent to the physical processes, but will
always have some advantages and disadvantages as com-
pared with physical processes

People may not change their lifestyles for environmental
savings alone, but might be more strongly motivated by some
functional advantage in a cyberworld

ty & Ruddy: Towards a Sustainable
nformation Society, Informatik, 2000

Environmental Public sector: Public awareness about
information Environmental condition of public goods
processing (EIP) I(r&ﬁosr)m oagg)rgtggskt)?/nsiblic Prerequisites for political
authorities decisions
Executing instruments of
environmental policy
Private sector: Legal compliance
Environmental : Environmental reporting
I\S/I;Sr;g?nesrrzeErR/t”gormatlon to stakeholders
Eco-efficiency and mate-
rial flow management
Information Direct impact on material | Material intensity of ISTs’
Society intensity of economy product life cycles
Technologies (IST)

Indirect impact on
material intensity of
economy

Substitution potential

Optimization potential

Induction potential




Baumer & Silberman: When the Implication is not to
Design (Technology), CHI, 2011

* |t is not obvious that the complex conditions associated with
unsustainability—including environmental, political, social, historical,
economic, and other factors—are best addressed with computing
technology

* Could the technology be replaced by an equally viable low-tech or non-technological
approach to the situation?

* Does a technological intervention result in more trouble or harm than the situation
it’s meant to address?

* Does a technology solve a computationally tractable transformation of a problem
rather than the problem itself?

* No single, simple solution will enable us to live sustainably

* Encourages attending to the complex ways technological interventions
reconfigure the situations into which they are introduced



DiSalvo et al.: Navigating the Terrain of Sustainable HCI,
Interactions, 2010

* A dominant genre in sustainable HCI is persuasive technology: systems that
attempt to convince users to behave in a more sustainable way.

* Designers usually determine what constitutes “sustainable behavior,”

* What counts as success is behavior change
or decision making that aligns with the predetermined desired behaviors, although

many papers in this genre do not evaluate sustainability
* How to approach users and their lifestyles: Individuals vs. groups/society

* Question whether a solution for sustainability can be achieved through

technology alone, or perhaps at all
* If technology is not the point, then what becomes the work of sustainable HCI?

* |f we agree that fundamental change is needed and it might be change that
ﬁsers? don’t want, who gets to decide what change should happen and
oW



Preist et al.: Evaluating Sustainable Interaction Design of
Digital Services: The Case of YouTube, CHI, 2019

* Application of Sustainable Interaction Design (SID) to understand and
reduce the environmental impact of digital services

* Energy use and associated GHG emissions of systems of products and
infrastructure associated with service use

* [dentifying and eliminating digital waste
* Evaluation should consider goal, mechanism, metric, method, and scope

* Corporate GHG strategy



Hindle: If you bill it, they will pay: Energy consumption
in the cloud will be irrelevant until directly billed for,
RE4SuSy, 2018

* We have limited motivation to investigate energy consumption in the
cloud because cloud customers cannot necessarily realize savings

* Much like carbon-taxes, end-user billing of software energy
consumption will promote reduced energy consumption or at least
sustainable energy consumption

* If system operators are choosing software packages and services for
their sustainability footprint then there will be significant pressure on
software developers to address energy consumption as a first-class
non-functional requirement in their software systems



Coroama & Mattern: Digital Rebound — Why
Digitalization Will Not Redeem Us Our Environmental

Sins, ICT4S, 2019

* Types of rebound effect
* Direct - Jevon’s paradox or Backfire
* Indirect — Induction effect, Income and substitution effect, Producer rebound
* Time rebound
* General equilibrium effects and other macro level rebound

* Digitalization and its rebound
* Digitalization without rebound



Increasing the awareness of the effects of
software and systems




Duboc et al.: Do we really know what we are building? Raising
awareness of potential Sustainability Effects of Software
Systems in Requirements Engineering, RE, 2019

* gquestion-based framework for raising awareness of the po-tential
effects of software systems on sustainability

Social

(1) Sense of Community; (2) Trust; (3) Inclusiveness and
Diversity; (4) Equality; (5) Participation and Communica-
tion;

Topic

Key Points - Social Dimension

Individual

(1) Health; (2) Lifelong learning; (3) Privacy; (4) Safety;
(5) Agency;

Environmental

(1) Material and Resources; (2) Soil, Atmospheric and Water
Pollution; (3) Energy; (4) Biodiversity and Land Use; (5)
Logistics and Transportation;

Economic

(1) Value; (2) Customer Relationship Management (CRM);
(3) Supply chain; (4) Governance and Processes; (5) Inno-
vation and R&D;

Technical

(1) Maintainability; (2) Usability; (3) Extensibility and
Adantabilitv: (4) Securitv: (5) Scalabilitv:

SOCIAL DIMENSION (Interviewer copy. Tick questions as you advance in the interview.)

SENSE OF COMMUNITY

rent rooms > personal contact >
sense of community

rating system > welcome and he

high use > change house dynam

high use > door codes > lessg

structural changes to properties

high use > long-term renters for

Specific Questions

Remind participants to consider...

SENSE OF COMMUNITY

[ ]Normally people belong to an organization, to an area or to a group of
like-minded people. Can the system affect a person’s sense of belonging to

these groups?

[ ]1the user community and the local community.
Say, for example: you mentioned an effect on the sense of commun,
What about the people in the local community?
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Characteristics
Data Privacy

Condori-Fernandez et al.: Using Participatory Technical-

action-research to validate a Software Sustainability
Model, ICT4S, 2019

 Sustainability Assessment
Framework (SAF)

 Validation of sustainability-

guality model

* Practitioners

e Confirms the multi-
dimensional nature of
sustainability

Attributes
Data Privacy

Definitions
privacy concerns arise wherever personally identifiable information is collected,
stored, or used.

Characteristics

Compatibility

Attributes
Co-existence

Interoperability

Definition according to [9]
product can perform its functions efficiently while sharing environment and
resources with other products.

a system can exchange information with other systems and use the information
that has been exchanged.

Context cov-

Context com-

system can be used in all the specified contexts of use

erage pleteness
Flexibility system can be used in contexts beyond those initially specified in the require-
ments.
Effectiveness Effectiveness accuracy and completeness with which users achieve specified goals.
Efficiency Efficiency resources expended in relation to the accuracy and completeness with which
users achieve goals.
Freedom Economic risk | system mitigates the potential risk to financial status in the intended contexts of
from risk mitigation use.
Environmental system mitigates the potential risk to property or the environment in the intended
risk mitigation contexts of use.
Health and system mitigates the potential risk to people in the intended contexts of use.
safety risk
mitigation
Functional Functional ap- the functions facilitate the accomplishment of specified tasks and objectives.
suitability propriateness
Functional system provides the correct results with the needed degree of precision.
correctness
Functional degree to which the set of functions covers all the specified tasks and user
completeness objectives.
Maintainability | Modifiability system can be effectively and efficiently modified without introducing defects
or degrading existing product quality
Modularity system is composed of components such that a change to one component has
minimal impact on other components.
Reusability an asset can be used in more than one system, or in building other assets
Testability effectiveness and efficiency with which test criteria can be established for a
system.
Performance Capacity the maximum limits of a product or system parameter meet requirements.
efficiency

TECH SOC

Timeliness Timeliness the fact or quality of being done or occurring at a favourable or useful time.

Regulation Regulation allows to draw conclusions about how well software adheres to application

compliance compliance related regulations in laws.

Scalability Scalability the ability of a computing process to be used or produced in a range of
capabilities

Tailorability Tailorability system’s capability to allow users to create or enable new configuration of

functionality as well as control information provision.

Resource uti-

the amounts and types of resources used by a system, when performing its

lization functions, meet requirements.
Time response, processing times and throughput rates of a system, when performing
bhehavionr its functions. meet reanirements.




Penzenstadler B. et al.: Software Engineering for
Sustainability - Find the Leverage Points!, IEEE Software,

2018

» “Leverage points are places within a
complex system (a corporation, an
economy, a living body, a city, an
ecosystem) where a small shift in one
thing can produce big changes in
everything.” Meadows D.H., 1999

* Software engineers need to be aware
of the power of software systems as a
transformational force in society and
the significant impact that their
designs can have.

Table A. Leverage points.3

Leverage point

LP 12

LP 11

LP 10

LP9

LP8

LP7

LP6

LP5

LP4

LP3

LP2

LP1

Constants, parameters, and numbers. Tweaking parameters allows change to the intensity of the flows in systems but
rarely alters the underlying dynamics.

The sizes of buffers and other stabilizing stocks, relative to their flows. Stabilize a system by adjusting the capacity of its
buffers, and make it more efficient by optimizing the flow.

The structure of material stocks and flows (such as transportation networks and population age structures). Physical
structure is crucial in a system but often hard to change; therefore, the leverage point is in proper initial design.

The lengths of delays, relative to the rate of system change. A system cannot respond to short-term changes when it has
long-term delays.

The strength of balancing feedback loops, relative to the impacts they respond to. Balancing feedback loops help systems
to self-correct by monitoring and adjusting according to the system goal.

The gain around reinforcing feedback loops. Reinforcing feedback loops can be sources of system instability or
mechanisms to amplify desired change, so adjusting their strength affects how the system responds to change.

The structure of information flows. This can create a new feedback loop that was not there before. Altering the structure of
information flows enables more agency by users.

The rules of the system, including incentives, punishments, and constraints. Social rules include constitutions, laws,
standards, policies, and incentives. Changing the rules of a system can change the behavior of the society under them.

The power to add, change, evolve, or self-organize system structure. In biology, this is called evolution; in society, we call it
empowerment. In systems terms, it is called self-organization, the strongest form of system resilience.

The goals of the system. Changing the goal of a system is a powerful strategy to effect change but can be hard to achieve.

The mind-set or paradigm out of which the system arises. Paradigms are a shared set of deep beliefs about how the world
works. They are the hardest to change in a system, as society will fiercely resist any challenges to its paradigms.

The power to transcend paradigms. This final and most effective LP is about being unattached to existing paradigms; there
is no certainty in any particular worldview.



